GPLUS EDUCATION

_		GPLUS E	DUCATION	
Dat Tin				PHYSICS
	rks :			
		THERMAL PROP	ERTIES OF MATT	ER
		Single Corre	ect Answer Type	
1.	The luminosity of t	he Rigel star is 17000 tim	es that of the sun. Assum	e both to be perfectly black
	bodies. If the surface	ce temperature of the sun	is 6000 K, then the temp	erature of the star is
	a) 68400 K	b) 1.02×10^8 K	c) 12000 K	d) 68400°C
2.	The weight of a perso	on is $60 kg$. If he gets 10^5 ca	lories heat through food an	d the efficiency of his body is
	28%, then upto how	much height he can climb (a	approximately)	
	a) 100 m	b) 200 m	c) 400 m	d) 1000 m
3.	If on heating liquid the apparent expansion		led is (1/100) th of mass sti	ll remaining, the coefficient of
	a) 1.25×10^{-4} /°C	b) 12.5×10^{-4} /°C	c) 1.25×10^{-5} /°C	d) None of these
4.	The initial temperatu		mperature falls to 64°C in 5	<i>minutes</i> and in 10 <i>minutes</i> to
	52°C then the temper	rature of surrounding will b	e	
	a) 26°C	b) 49°C	c) 35°C	d) 42°C
5.	80~gm of water at 30	°C are poured on a large blo	ck of ice at 0°C. The mass o	f ice that melts is
	a) 30 <i>gm</i>	b) 80 <i>gm</i>	c) 1600 gm	d) 150 <i>gm</i>
6.	Which one of the fo	ollowing processes depend	ds on gravity?	
	a) Conduction	b) Convection	c) Radiation	d) None of these
7.	Four pieces of iron h	eated in a furnace to differe	nt temperatures show diffe	rent colours listed below.
	Which one has the hi	ghest temperature	1007701	
	a) White	b) Yellow	c) Orange	d) Red
8.	Boiling water is chan	ging into steam. At this stag	e then specific heat of wate	er is
	a) < 1	b) ∞	c) 1	d) 0
9.		_	_	thermal conductivities K_1 , K_2
	and K_3 . The points P	and Q are maintained at dif	ferent temperatures for the	e heat to flow at the same rate
	along PRQ and PQ th	nen which of the following o	ptions is correct	
	R			
	K_1 K_2			
	$P \stackrel{K_3}{\longrightarrow} Q$			
	1		ν ν	
	a) $K_3 = \frac{1}{2}(K_1 + K_2)$	b) $K_3 = K_1 + K_2$	c) $K_3 = \frac{K_1 K_2}{K_1 + K_2}$	d) $K_3 = 2(K_1 + K_2)$
10.	A slab consists of two	o parallel layers of two diffe	rent materials of same thicl	kness having thermal
	conductivities K_1 and	d K_2 . The equivalent conduct	tivity of the combination is	
	a) $K_1 + K_2$	b) $\frac{K_1 + K_2}{2}$	c) $\frac{2K_1K_2}{K_1+K_2}$	d) $\frac{K_1 + K_2}{2K_1K_2}$
	a) $\Lambda_1 + \Lambda_2$	2	$K_1 + K_2$	$\frac{1}{2K_1K_2}$
11.	-		a block of metal feel equally	cold or hot. The temperature
	of block of wood and			
	a) Equal to temperat	=	b) Less than the temp	erature of the body
	c) Greater than temp	perature of the body	d) Either (b) or (c)	

12. If there are no heat losses, the heat released by the condensation of x g of steam at 100°C into water at 100°C can be used to convert y gm of ice at 0°C into water at 100°C. Then the ratio y:x is nearly b) 2.5:1c) 2:113. The resistance of a resistance thermometer has values 2.71 and 3.70 ohm at 10°C and 100°C. The temperature at which the resistance is 3.26 *ohm* is a) 40°C b) 50°C c) 60°C 14. Ratio among linear expansion coefficient (α) , areal expansion coefficient (β) and volume expansion coefficient (γ) is a) 1:2:3 b) 3:2:1c) 4:3:2d) None of these 15. A hollow copper sphere S and a hollow copper cube C, both of negligible thin walls of same area, are filled with water at 90°C and allowed to cool in the same environment. The graph that correctly represents their a) _T 16. A solid copper sphere (density ρ and specific heat capacity c) of radius r at an initial temperature 200K is suspended inside a chamber whose walls are at almost 0K. The time required (in μ s) for the temperature of the sphere to drop to 100 K is 17. Three rods of the same dimension have thermal conductivities 3K, 2K and K. They are arranged as shown in fig. Given below, with their ends at 100°C, 50°C and 20°C. The temperature of their junction is 100°C PPLUS EDUCATION 3*K* b) 70°C a) 60°C c) 50°C d) 35°C 18. There are two spherical balls A and B of the same material with same surface, but the diameter of A is half that of B. If A and B are heated to the same temperature and then allowed to cool, then a) Rate of cooling is same in both b) Rate of cooling of *A* is four times that of *B* d) Rate of cooling of A is $\frac{1}{4}$ times that of B c) Rate of cooling of *A* is twice that of *B* 19. The maximum energy in thermal radiation from a source occurs at the wavelength 4000Å. The effective temperature of the source is c) 10^4 K a) 7325 K b) 800 K 20. An experiment takes 10 min to raise temperature of water from 0°C and 100°C and another 55 min to convert it totally into steam by a stabilized heater. The latent heat of vaporization comes out to be a) 530 calg^{-1} b) 540 calg^{-1} c) 550 calg^{-1} d) 560 calg^{-1} 21. In a room where the temperature is 30°C, a body cools form 61°C to 59°C in 4 min. The time (in minutes) taken by the body to cool from 51°C to 49°C will be b) 5 d) 4 22. A lead bullet at 27°C just melts when stopped by an obstacle. Assuming that 25% of heat is absorbed by the obstacle, then the velocity of the bullet at the time of striking (M.P. of lead = 327°C, specific heat of lead = 0.03cal/g°C, latent heat of fusion of lead = 6cal/g and J = 4.2joule/cal)

a) 410m/s

c) 307.5m/s

b) 1230*m/s*

d) None of the above

23.		slides on a rough horizontal rmal energy developed in th	-	e block decreases from
	a) 3.75 <i>J</i>	b) 37.5 <i>J</i>	c) 0.375 <i>J</i>	d) 0.75 <i>J</i>
24.	Water falls from a height is used up in heating wat		n temperature of water at	the bottom if whole energy
	a) 0.96°C	b) 1.02°C	c) 1.16°C	d) 0.23°C
25.	at temperature T_0 , while put into thermal contact final temperature (Ignore	box B contains one mole of with each other and heat flo	helium at temperature (7/ ows between them until the	
	of T_0 is	2	F	2
	a) $T_f = \frac{7}{3}T_0$	b) $T_f = \frac{3}{2}T_0$	c) $T_f = \frac{5}{2}T_0$	d) $T_f = \frac{3}{7}T_0$
26.	The energy emitted per s	econd by a black body at 27 nergy emitted per second w	7°C is $10J$. If the temperatu	/
	a) 20 <i>J</i>	b) 40 <i>J</i>	c) 80 <i>J</i>	d) 160 <i>J</i>
27.	respectively. Temperatur	nd cold end of a 20 <i>cm</i> long re at the centre of the rod is	•	
20	a) 50°C	b) 60°C	c) 40°C	d) 30°C
28.	· -	This temperature is approx b) $-297^{\circ}F$	imately c) 329° <i>F</i>	J) 2610E
20	a) 215° F	,	•	d) 361° <i>F</i> The liquid emits heat at the
<i>2</i> 9.	=		The second secon	comes 40°C, the rate of heat
	a) 160	b) 140	c) 80	d) 60
30.	A steel wire of uniform ar	ea 2 mm² is heated up to 50	O°C and is stretched by tying	g its ends rigidly. The change
	in tension when the temp	perature falls from 50°C to 3	80° C is (Take $Y = 2 \times 10^{11}$	Nm^{-2} , $\alpha = 1.1 \times 10^{-5} ^{\circ}C^{-1}$)
	a) $1.5 \times 10^{10} \text{ N}$	b) 5 N	c) 88 N	d) $2.5 \times 10^{10} \text{ N}$
31.	The original temperature raised so as to double the	of a black body is 727°C. T total radiant energy, is	he temperature at which tl	nis black body must be
	a) 971 <i>K</i>	b) 1190 <i>K</i>	c) 2001 K	d) 1458 <i>K</i>
32.		am is $536 \ cal/gm$, then its		
	a) 2.25×10^6	b) 2.25×10^3	c) 2.25	d) None
33.	On a hilly region, water	· boils at 95°C.The tempe	rature expressed in Fahr	enheit is
	a) 100°F	b) 20.3°F	c) 150°F	d) 203°F
34.		temperature T_1 and T_2 at its		•
	-	ubled keeping temperature		
	a) 4 <i>Q</i> ₁	b) 2 <i>Q</i> ₁	c) $\frac{Q_1}{4}$	$d)\frac{Q_1}{2}$
35.	The gas thermometers ar	e more sensitive than liqui	d thermometers because	
	a) Gases expand more th	an liquids	b) Gases are easily obtain	ned
	c) Gases are much lighter		d) Gases do not easily cha	ange their states
36.		iation of temperature (T) or abstance is in the solid state	_	
	$ \begin{array}{c c} T & & C(H_3, T_2) & \gamma \\ A(H_1, T_1) & \beta & D(H_4, T_2) \end{array} $			

	a) T is the molting point of the solid				
	a) T_2 is the melting point of the solid	from solid to limit			
	b) BC represents the change of state from solid to liquid c) $(H_2 - H_1)$ represents the latent heat of fusion of the substance				
27	d) $(H_3 - H_1)$ represents the latent he		l l c c m		
37.	_	_	h and same area of cross-section. They		
	-		er. The temperature at one end of <i>A</i> is		
	100°C and that of <i>B</i> at the other end		ial conductivity is 1:3, then under		
	steady state, the temperature of the		D 40000		
0.0	a) 25°C b) 50°C	c) 75°C	d) 100°C		
38.	The volume of a metal sphere inc		nperature is raised by 40°C. The		
	coefficient of linear expansion of				
	a) 2×10^{-5} b) 6×10	$^{-5}$ c) 18×10^{-5}	d) 1.2×10^{-5}		
39.	Flash light equipped with a new s	et of batteries, produces brig	ht white light. As the batteries were		
	out				
	a) The light intensity gets reduced	l with no change in its colour	•		
	b) Light colour changes first to ye	•			
	c) It stops working suddenly whil		ange in interiorey		
	d) Colour changes to red and also				
40	C	• •	Not 2700. The lid of the container is		
40.			V at 27°C. The lid of the container is		
			me temperature will rise from 27°C		
	to 77°C [Given specific heat of wa				
	a) 8 min 20 s b) 6 min	2 s	d) 14 min		
41.	For proper ventilation of building, w	indows must be open near the l	pottom and top of the walls so as to let		
	pass	-			
	a) In more air				
	b) In cool air near the bottom and ho		All .		
	c) In hot air near the roof and cool a	r out near the bottom	W.		
	d) Out hot air near the roof				
42.	Two thermometers A and B are expo	_	is pointed black, but that of B is not		
	pointed. The correct statement regar				
	a) Temperature of A will rise faster t		e will be the same in both		
	b) Both A and B show equal rise in b				
	c) Temperature of A will remain mo	re than <i>B</i>			
	d) Temperature of <i>B</i> will rise faster				
43.		_	cool. If it cracks, a probable reason for		
	this is the following property of glass				
	a) Low thermal conductivity	, ,	al conductivity		
	c) High specific heat	d) High meltin	~ -		
44.	When two ends of a rod wrapped wi		erent temperatures and after same		
	time every point of the rod attains a	-			
	a) Conduction of heat at different po	ints of the rod stops because th	e temperature is not increasing		
	b) Rod is bad conductor of heat				
	c) Heat is being radiated from each p				
	d) Each point of the rod is giving hea	_	_		
45.	A body radiates energy $5W$ at a temp	perature of 127°C. If the temper	ature is increased to 927°C, then it		
	radiates energy at the rate of) 10 Pris	1) 20247		
	a) 410W b) 81W	c) 405W	d) 200 <i>W</i>		

46.	In a radiation spectrum wavelength. If the maxis outer surface of star is	mum intensity i	n spectrum of a sta	r is at 5000 A. t	the temperature of the	
	a) 7800 K	b) 6240 K	c) 5240 k		d) 3640 K	
47.	How much heat energy is	gained when 5 kg	of water at 20°C is l	brought to its bo	iling point	
	(specific heat of water $= 4$	4.2 $kJ kg^{-1}c^{-1}$)				
	a) 1680 <i>kJ</i>	b) 1700 <i>kJ</i>	c) 1720 k	I	d) 1740 <i>kJ</i>	
48.	The point on the pressucalled	re-temperature	phase diagram wh	ere all the thre	e phases co-exist is	
	a) Sublimation point		b) Fusion	noint		
	c) Triple point			zation point		
40	• •	ha anaatuum of a	-	-	atad by	
49.		-	· ·		•	
- 0	a) Wien's law	b) Stefan's law	c) Planck'	siaw	d) Kirchhoff's law	
50.	4200 <i>J</i> of work is required		1 1 1000			
	a) Increasing the tempera	_	_			
	b) Increasing the tempera	•	•	•		
	c) Increasing the tempera	-	-			
	d) Increasing the tempera	_	_			
51.	Three rods of equal length	•	•	0 -	•	
	Distance <i>OR</i> remains sam	_	e in temperature. Co	efficient of linea	r expansion for <i>PR</i> and <i>RQ</i>	
	is same, <i>i.e.</i> , α_2 but that for	or PQ is α_1 . Then				
			4			
	a) $\alpha_2 = 3\alpha_1$	b) $\alpha_2 = 4\alpha_1$	c) $\alpha_1 = 30$	α_2	d) $\alpha_1 = 4\alpha_2$	
52.		rial expansion of a	solid is 2×10^{-5} /°C	. Its coefficient o		
	a) $4 \times 10^{-5} / ^{\circ}$ C	b) 3×10^{-5} /°C	c) 2×10^{-1}		d) 1×10^{-5} /°C	
53.	A brass rod of length 50	•	•	•	,	
	•		•			
		diameter at 50°C. If the coefficients of linear expansion of brass and steel are 2.5×10^{-5} °C ⁻¹ and 1.25×10^{-5} °C ⁻¹ , then change in length of the combined rod at 200°C is				
					D 0 6	
	a) 2.4mm	b) 2.8mm	c) 3.2mm		d) 3.6mm	
54.	The ratio of radiant energ hotter body is $1000K$, the	-	e of colder body will	be	1, the temperature of	
	a) 250 <i>K</i>	b) 500 <i>K</i>	c) 1000 <i>K</i>		d) 62.5 <i>K</i>	
55.	It is difficult to cook rice in	•				
	a) Low boiling point and l	0 1		oiling point and		
	c) Low boiling point and l	ow pressure	d) High bo	oiling point and l	nigh pressure	
56.	Two metal cubes A and B	of same size are a	rranged as shown ir	the figure. The	extreme ends of the	
	combination are maintain		_	_	_	
	coefficients of thermal con	nductivity of A an	d B are $300W/m^{\circ}$ C a	and $200W/m^{\circ}$ C,	respectively. After steady	
	state is reached, the temp	erature of the into	erface will be			

a) 45°C

b) 90°C

c) 30°C

d) 60°C

57. A body, which emits radiations of all possible wavelengths, is known as

a) Good conductor

b) Partial radiator

c) Absorber of photons

d) Perfectly black-body

58. A solid ball of metal has a concentric spherical cavity within it. If the ball is heated, the volume of the cavity will

a) Increase

b) Decrease

c) Remain unaffected

d) None of these

59. Steam at 100°C is passed into 1.1 kg of water contained in a calorimeter of water equivalent to 0.02 kg at 15°C till the temperature of the calorimeter and its contents rises to 80°C. The mass of the steam condensed in kg is

a) 0.130

b) 0.065

c) 0.260

d) 0.135

60. A hot body at temperature T losses heat to the surrounding temperature T_s by radiation. If the difference in the temperature is small then, the rate of loss of heat by the hot body is proportional to

a) $(T - T_s)$

b) $(T - T_s)^2$

c) $(T - T_s)^{1/2}$

d) $(T - T_{\rm s})^4$

61. A liquid of mass M and specific heat S is at a temperature 2t. If another liquid of thermal capacity 1.5 times, at a temperature of $\frac{t}{3}$ is added to it, the resultant temperature will be

a) $\frac{4}{3}t$

b) *t*

c) $\frac{t}{2}$

d) $\frac{2}{3}t$

62. The graph signifies

GPLUS EDUCATION

a) Adiabatic expansion of a gas

b) Isothermal expansion of a gas

c) Change of state from liquid to solid

d) Cooling of a heated solid

63. The variation of density of water with temperature is represented by the

64. During constant temperature, we feel colder on a day when the relative humidity will be

a) 25%

b) 12.5%

c) 50%

d) 75%

65. "Good emitters are good absorbers" is a statement concluded from

a) Newton's law of cooling

b) Stefan's law of radiation

c) Provost's theory

d) Kirchhoff's law

66. Water has maximum density at

a) 0°C

b) 32°F

c) -4° C

d) 4°C

67. Two rods P and Q have equal lengths. Their thermal conductivities are K_1 and K_2 and cross sectional areas are A_1 and A_2 . When the temperature at ends of each rod are T_1 and T_2 respectively, the rate of flow of heat through P and Q will be equal, if

a)
$$\frac{A_1}{A_2} = \frac{K_2}{K_1}$$

b)
$$\frac{A_1}{A_2} = \frac{K_2}{K_1} \times \frac{T_2}{T_1}$$

b)
$$\frac{A_1}{A_2} = \frac{K_2}{K_1} \times \frac{T_2}{T_1}$$
 c) $\frac{A_1}{A_2} = \sqrt{\frac{K_1}{K_2}}$

$$d)\frac{A_1}{A_2} = \left(\frac{K_2}{K_1}\right)^2$$

- 68. Amount of heat required to raise the temperature of a body through 1K is called its
 - a) Water equivalent
- b) Thermal capacity
- c) Entropy
- d) Specific heat
- 69. A lead ball moving with a velocity V strikes a wall and stops. If 50% of its energy is converted into heat, then what will be the increase in temperature (Specific heat of lead is S)

a)
$$\frac{2V^2}{JS}$$

- 70. A body takes 5 minutes to cool from 90°C to 60°C. If the temperature of the surroundings is 20°C, the time taken by it to cool from 60°C to 30°C will be
 - a) 5 min
- b) 8 min
- c) 11 min
- d) 12 min
- 71. An ice box made of Styrofoam (Thermal conductivity= $0.01 \text{Jm}^{-1} s^{-1} \text{K}^{-1}$) is used to keep liquids cool. It has a total wall area including lid of 0.8 m² and wall thickness of 0.2 cm. A bottle of water is placed in the box and filled with ice. If the outside temperature is 30°C the rate flow of heat into the box is (in Is^{-1})
 - a) 16

b) 14

c) 12

- d) 10
- 72. Two rods of same length and material transfer a given amount of heat in 12 s, when they are joined end to end (ie, in series). But when they are joined in parallel, they will transfer same heat under same conditions in
 - a) 24 s

b) 3 s

c) 48 s

- 73. Which one of the following is $v_m T$ graph for perfectly black body? v_m is the frequency of radiation with maximum intensity, T is the absolute temperature.

b) C

d) A

- 74. The wavelength of radiation emitted by a body depends upon
 - a) The nature of its surface

b) The area of its surface

c) The temperature of its surface

- d) All the above factors
- 75. The real coefficient of volume expansion of glycerine is 0.000597 per°C and linear coefficient of expansion of glass is 0.000009 per°C. Then the apparent volume coefficient of expansion of glycerine is
 - a) 0.000558 per°C
- b) 0.00057 per°C
- c) 0.00027 per°C
- d) 0.00066 per°C
- 76. Temperatures of two stars are in ratio 3:2. If wavelength of maximum intensity of first body is 4000Å, what is corresponding wavelength second body?
 - a) 9000Å
- b) 6000Å
- c) 2000Å
- d) 8000Å

- 77. The temperature of the sun is measured with
 - a) Platinum thermometer

b) Gas thermometer

c) Pyrometer

d) Vapour pressure thermometer

- 78. A wall has two layers *A* and *B*, made of two different materials. The thermal conductivity of material *A* is twice that of *B*. If the two layers have same thickness and under thermal equilibrium, the temperature difference across the wall is 48°C, the temperature difference across layer *B* is
 - a) 40°C

b) 32°C

c) 16°C

- d) 24°C
- 79. Two bars of thermal conductivities K and 3K and lengths 1cm and 2cm respectively have equal cross-sectional area, they are joined lengths wise as shown in the figure. If the temperature at the ends of this composite bar is 0° C and 100° C respectively (see figure), then the temperature ϕ of the interface is

a) 50°C

- b) $\frac{100}{3}$ °C
- c) 60°C

- d) $\frac{200}{3}$ °C
- 80. If the temperature of the sun becomes twice its present temperature, then
 - a) Radiated energy would be predominantly in infrared
 - b) Radiated energy would be predominantly in ultraviolet
 - c) Radiated energy would be predominantly in X-ray region
 - d) Radiated energy would become twice the present radiated energy
- 81. For cooking the food, which of the following type of utensil is most suitable
 - a) High specific heat and low conductivity
- b) High specific heat and high conductivity
- c) Low specific heat and low conductivity
- d) Low specific heat and high conductivity
- 82. Two spheres P and Q, of same colour having radii 8 cm and 2 cm are maintained at temperatures 127°C and 527°C respectively. The energy radiated by P and Q is
 - a) 0.054
- b) 0.0034
- c) 1

- d) 2
- 83. A solid material is supplied with heat at constant rate and the temperature of the material changes as shown. From the graph, the false conclusion drawn is

- GPLUS EDUCATION
- a) AB and CD of the graph represent phase changes
- b) AB represents the change of state from solid to liquid
- c) Latent heat of fusion is twice the latent heat of vaporization $% \left(1\right) =\left(1\right) \left(1\right) \left$
- d) CD represents change of state from liquid to vapour
- 84. Four identical rods of same material are joined end to end to form a square. If the temperature difference between the ends of a diagonal is 100°C, then the temperature difference between the ends of other diagonal will be
 - a) 0°C

b) $\frac{100}{l}$ °C; where l is the length of each rod

c) $\frac{100}{2l}$ °C

- d) 100°C
- 85. Suppose the sun expands so that its radius becomes 100 times its present radius and its surface temperature becomes half of its present value. The total energy emitted by it then will increase by a factor of
 - a) 10^4

b) 625

c) 256

- d) 16
- 86. Two identical plates of different metals are joined to form a single plate whose thickness is double the thickness of each plate. If the coefficients of conductivity of each plate are 2 and 3 respectively, then the conductivity of composite plate will be
 - a) 5

b) 2.4

c) 1.5

d) 1.2

87. Liquid oxygen at 50 K is heated to 300 K at constant pressure of 1 atm. The rate of heating is constant. Which of the following graphs represents the variations of temperature with time?

- 88. A faulty thermometer has its lower fixed point marked as -10° C and upper fixed point marked as 110° . If the temperature of the body shown in this scale is 62°, the temperature shown on the Celsius scale is
 - a) 72°C

b) 82°C

c) 60°C

- d) 42°C
- 89. Two thermometers are used to record the temperature of a room. If the bulb of one is wrapped in wet
 - a) The temperature recorded by both will be same
 - b) The temperature recorded by wet-bulb thermometer will be greater than that recorded by the other
 - c) The temperature recorded by dry-bulb thermometer will be greater than that recorded by the other
 - d) None of the above
- 90. The temperature of the two outer surfaces of a composite slab, consisting of two materials having coefficients of thermal conductivity K and 2K and thickness x and 4x, respectively are T_2 and T_1 $(T_2 > T_1)$. The rate of heat transfer through the slab, in a steady state is $\left(\frac{A(T_2 - T_1)K}{r}\right)f$, with fequals to

c) 2/3

- d) 1/3
- 91. The top of insulated cylindrical container is covered by a disc having emissivity 0.6 and thickness 1 cm. The temperature is maintained by circulating oil as shown in figure. If temperature of upper surface of disc is 127°C and temperature of surrounding is 27°C, then the radiation loss to the surroundings will be (Take $\sigma = \frac{17}{3} \times 10^{-8} W/m^2 K^4$

a) Temperature of ideal gas scale

		•				
	a) $595 I/m^2 \times s$	b) 595 $cal/m^2 \times s$	c) 991.0 $J/m^2 \times s$	d) $440 L/m^2 \times s$		
92		•	section are kept parallel	=		
72.	=	=		tivity to that of the first rod		
	-	u oo c. The facto of the c	enective thermal conduc	tivity to that of the mist rou		
	is (the ratio= $\frac{K_1}{K_2} = \frac{3}{4}$)					
	a) 7:4	b) 7:6	c) 4:7	d) 7:8		
93.	The temperature of a bo	dy on Kelvin scale is found	d to be $x K$. When it is mea	sured by Fahrenheit		
	thermometer, it is found	I to be $x^{o}F$, then the value	of x is			
	a) 40	b) 313	c) 574.25	d) 301.25		
94.	Which of the following of	ylindrical rods will condu	ct most heat, when their er	nds are maintained at the		
	same steady temperatur					
	a) Length 1 m; radius 1		b) Length 2 <i>m</i> ; radius 1			
	c) Length 2 m; radius 2		d) Length 1 m; radius 2			
95.				esent when the water acquires		
	= :	Latent heat of steam is 540		D 00		
0.0	a) 24.8 <i>g</i>	b) 24 <i>g</i>	c) 36.6 <i>g</i>	d) 30 <i>g</i>		
96.	The resistance of the wire in the platinum resistance thermometer at ice point is 5Ω and at steam					
	point is 5.25Ω . When the thermometer is inserted in an unknown hot bath its resistance is found					
	-	rature of the hot bath is				
	a) 100°C	b) 200°C	c) 300°C	d) 350°C		
97.	The amount of heat energy radiated by a metal at temperature T is E , when the temperature is					
	increased to 3 T, energ	gy radiated is b) 9 <i>E</i>	CATION			
	a) 81 <i>E</i>	b) 9 <i>E</i>	c) 3 <i>E</i>	d) 27 <i>E</i>		
98.	=-		k body at 127°C temperatu			
	$10^6 J/s - m^2$. Temperature of the black body at which the rate of energy emission is $16.0 \times 10^6 J/s - m^2$					
	will be			-		
	a) 254°C	b) 508°C	c) 527°C	d) 727°C		
99.		-	\times 10 ⁻⁵ °C ⁻¹ has a length of	1 m at 20°C. The temperature		
	at which it is shortened) 2000	D 2500		
100	a) -20°C	*	c) -30°C	d) –25°C		
100	Hot water kept in a beaker placed in a room cools from 70°C to 60°C in 4 <i>minutes</i> . The time taken by it to					
	cool from 69°C to 59°C v	viii be	h) More than 1 minute			
	a) The same 4 minutesc) Less than 4 minutes		b) More than 4 minuted) We cannot say defin			
101	=	meters the one which can		apidly changing temperature		
101	is a	meters, the one which can	be used for measuring a re	apidly changing temperature		
	a) Thermocouple therm	ometer	b) Gas thermometer			
	c) Maximum resistance		d) Vapour pressure the	ermometer		
102	•			gy possessed is $2KJ$, what is its		
	final energy	•	,	, , , , , , , , , , , , , , , , , , ,		
	a) 32 <i>KJ</i>	b) 320 <i>KJ</i>	c) 1200 <i>KJ</i>	d) None of these		
103	. The amount of radiatior	emitted by a perfectly bla	ack body is proportional to			

GPLUS EDUCATION WEB: <u>WWW.GPLUSEDUCATION.ORG</u> PHONE NO: 8583042324 Page | 10

- b) Fourth root of temperature on ideal gas scale
- c) Fourth power of temperature on ideal gas scale
- d) Source of temperature on ideal gas scale
- 104. A metal rod AB of length 10x has its one end A in ice at 0° C and the other end B in water at 100° C. If a point P on the rod is maintained at 400° C, then it is found that equal amounts of water and ice evaporate and melt per unit time. The latent heat of evaporation of water is $540 \ cal/g$ latent heat of melting of ice is $80 \ cal/g$. If the point P is at a distance of λx from the ice end A, find the value of λ . [Neglect any heat loss to the surrounding]
 - a) 9

b) 2

c) 6

- d) 1
- 105. Consider a compound slab consisting of two different materials having equal lengths, thicknesses and thermal conductivities K and 2K respectively. The equivalent thermal conductivity of the slab is
 - a) $\sqrt{2K}$

b) 3K

c) $\frac{4}{3}K$

- d) $\frac{2}{3}K$
- 106. A thin square steel plate with each side equal to 10 cm is heated by a blacksmith. The rate of radiated energy by the heated plate is 1134 W. The temperature of the hot steel plate is (Stefan's constant $\sigma = 5.67 \times 10^{-8} watt \ m^{-2} K^{-4}$, emissivity of the plate = 1)
 - a) 1000 K
- b) 1189 K
- c) 2000 K
- d) 2378 K
- 107. Two substances A and B of equal mass m are heated at uniform rate of 6 $cal\ s^{-1}$ under similar conditions. A graph between temperature and time is shown in figure. Ratio of heat absorbed H_A/H_B by them for complete fusion is

a) 9/4

b) 4/9

c) 8/5

- d) 5/8
- 108. Two metal strips that constitute a thermostat must necessarily differ in their
 - a) Mass

b) Length

c) Resistivity

- d) Coefficient of linear expansion
- 109. On a clear sunny day, an object at temperature T is placed on the top of a high mountain. An identical object at the same temperature is placed at the foot of mountain. If both the objects are exposed to sunrays for two hours in an identical manner, the object at the top of the mountain will register a temperature
 - a) Higher than the object at the foot
- b) Lower than the object at the foot

c) Equal to the object at the foot

- d) None of the above
- 110. On which of the following scales of temperature, the temperature is never negative
 - a) Celsius
- b) Fahrenheit
- c) Reaumur
- d) Kelvin
- 111. In a pressure cooker, cooking is faster because the increase of vapour pressure
 - a) Increases specific heat

b) Decreases specific heat

c) Decreases the boiling point

- d) Increases the boiling point
- 112. The adjoining diagram shows the spectral energy density distribution E_{λ} of a black body at two different temperatures. If the areas under the curves are in the ratio 16 : 1, the value of temperature T is

a) 32,000 K 113. Shown below are the following plots is correctly a)	-	c) 8,000 K curves at temperatures T_1 and T_2	d) 4,000 K d $T_2(T_2 > T_1)$. Which of the
λ	→	λ λ	${\longrightarrow}$
black surfaces and ha temperatures 2T and condition is	b) 1672 <i>joules</i> es of same area are kep we very high thermal constructions of the total street are the same	c) 1672 watts ot parallel and close to each of conductivity. The first and thi emperature of the middle (i.e.	d) 1672 <i>ergs</i> other. They are considered as ideal ird plates are maintained at e. second) plate under steady state
a) $\left(\frac{65}{2}\right)^{\frac{1}{4}}T$	b) $\left(\frac{97}{4}\right)^{\frac{1}{4}}T$	c) $\left(\frac{97}{3}\right)^{\frac{1}{4}}T$	d) $(97)^{\frac{1}{4}}T$
bar show in figure, w	hat will be the temperated \circ Steel 0° C	opper is nine times that of ste	eel. In the composite cylindrical er ad steel?
a) 75°C	b) 67°C	c) 33°C	d) 25°C
•		of ice at 0°C. The final temper	,
a) $-\frac{5}{3}$ °C	b) − $\frac{5}{2}$ °C	c) −5°C	d) 0°C
118. Surface of the lake is	at 2°C. Find the tempe	rature of the bottom of the la	ke
a) 2°C	b) 3°C	c) 4°C	d) 1°C
119. The temperature on 0			nperature on the Fahrenheit scale
a) 40° <i>F</i>	b) 77° <i>F</i>	c) 50°F	d) 45° <i>F</i>
120. A beaker is complete	•		
a) When heated, but			ut not when heated
c) Both when heated		•	eated nor when cooled
			ne same quantity of ice filled in
		utes. The ratio of their therm	
a) 1.5	b) 1	c) 2/3	d) 4
122. Ice formed over lakes			
		s in further ice formation	
	vity and retards furthe		
		urther formation of ice	
d) It is very good radi			
		expansion γ in a container ha	iving coefficient of linear
= :	vel of liquid in the cont		
a) Rise	t atation	b) Fall	
c) Will remain almos		d) It is difficult to s	say
124. Which of the following			4) 0:1
a) Water	b) Alcohol	c) Glycerine	d) Oil
143. When the room ten	iperature becomes e	quai to the new point, the	relative humidity of the room is

d) 85%

c) 70%

a) 100%

b) zero%

126. A body cools from 60°C to 50°C in 10 min. if the Newton's law of cooling to hold good, the temp	=	-
will be		
a) 45°C b) 42.85°C	c) 40°C	d) 38 . 5°C
127. A metallic solid sphere is routing about its dian	neter as axis of rotation. I	If the temperature is
increased by 200°C, the percentage in its mome	ent of inertia is (Coefficie	nt of linear expansion of
the metal= 10^{-5} °C ⁻¹)		
a) 0.1% b) 0.2%	c) 0.3%	d) 0.4%
128. Three discs, A, B and C having radii 2 m, 4 m ar	nd 6 m respectively are co	oated with carbon black
on their outer surfaces. The wavelengths corre		
nm and 500 nm respectively. The power radiat	-	
a) Q_A is maximum b) Q_B is maximum		$d) Q_A = Q_B = Q_C$
129. By increasing the temperature of a liquid its		$\Box A A A A A A A A A A A A A A A A A A A$
a) Volume and density decrease	b) Volume and density	incresse
c) Volume increases and density decreases	d) Volume decrease s a	
130. The spectrum of a black body at two temperatures		-
		i the figure. Let A_1 and A_2 be
the areas under the two curves respectively. The va	alue of $\frac{2}{A_1}$ is	
1 327°C 27°C	>	
Wavelength	3.0.4	D 4.6 4
a) 1:16 b) 4:1	c) 2:1	d) 16:1
131. Pick out the statement which is not true	CATION	
a) IR radiations are used for long distance photogramb) IR radiations arise due to inner electron transition		
c) <i>IR</i> radiations are detected by using a bolometer	ons in atoms	
d) Sun is the natural source of <i>IR</i> radiation		
132. Dry ice is		
	c) Liquid nitrogen	d) Solid carbon dioxide
133. The latent heat of vaporization of a substance is alv	, .	·· ,
a) Greater than its latent heat of fusion	b) Greater than its latent	t heat of sublimation
c) Equal to is latent heat of sublimation	d) Less than its latent of	
134. According to the experiment of Ingen Hausz the rel	ation between the thermal	conductivity of a metal rod
is K and the length of the rod whenever the wax me	elts is	
a) $K/l = \text{constant}$ b) $K^2/l = \text{constant}$	c) $K/l^2 = \text{constant}$	d) $Kl = constant$
135. A conductor of area of cross-section 100 cm ² a	nd length 1 cm has coeffi	cient of thermal
conductivity 0.76 cals ⁻¹ m ⁻¹ K ⁻¹ . If 30 cal of hea	nt flows through the cond	luctor per second. Find the
temperature difference across the conductor.	_	
a) 40°C b) 20°C	c) 25°C	d) 35°C
136. At a certain temperature for given wave length, the	•	•
black body in same circumstances is known as	•	
a) Relative emissivity	b) Emissivity	
c) Absorption coefficient	d) Coefficient of reflection	on
137. A body cools from 62°C to 50°C in 10 min and t	o 42°C in the next 10 mir	n. The temperature of the
surrounding is		

a) 16°C	b) 26°C	c) 36°C	d) 21°C	
138. 5 g of ice at 0°C is dr	opped in a beaker containi	ing 20 g of water at 40°C.	The final temperature will	
be	• •		•	
a) 32°C	b) 16°C	c) 8°C	d) 24°C	
139. A red flower kept in g	•	c)	4,210	
a) Red	b) Yellow	c) Black	d) White	
	used to see infra-red spectru	,	d) white	
a) Rock-salt	b) Nicol	c) Flint	d) Crown	
•	•		d between temperature 20°C	
and 80 C. The radio of	the effective thermal conduc			
a) 7:4	b) 7 : 6	c) 4:7	d) 7 : 8	
			K_2 and areas of cross section	
A_1 and A_2 are connec	ted as shown in figure. The co	ommon coefficient of therm	al conductivity K will be	
K ₁				
A ₁				
Q_1 K_2 Q_2				
A_2				
a) $K_1 A_1 + K_2 A_2$	b) $\frac{K_1 A_1}{K_2 A_2}$	c) $\frac{K_1A_1 + K_2A_2}{A_1 + A_2}$	d) $\frac{K_1A_2 + K_2A_1}{A_1}$	
	112112	12	1 ·Z	
143. Calorie is defined as	the amount of heat requir	ed to raise temperature o	of 1 g of water by 1 °C and	
it is defined under w	which of the following cond	itions?		
a) From 14.5°C to 15	5.5°C at 760 mm of Hg	b) From 98.5°C to 99.5	5°C at 760 mm of Hg	
c) From 13.5°C to 14	4.5°C at 76 mm of Hg	d) From 3.5°C to 4.5°C	at 76 mm of Hg	
144. The thermal capacity	of a body is 80 cal , then its w	ater equivalent is		
a) 80 <i>cal/g</i>	b) 8 g	c) 80 g	d) 80 <i>kg</i>	
145. Recently, the phenom	enon of superconductivity ha	s been observed at 95 K. T	his temperature is nearly	
equal to	O PLUS ED U	CHITOIA		
a) -288°F	b) −146°F	c) -368°F	d) +178°F	
146. Assuming the sun to	be a spherical body of rad	ius R at a temperature o	f $T K$, evaluate the total	
radiant power, incid	lent on earth, at a distance	r from the sun		
Where r_0 is the radiu	is of the earth and σ is stefa	an's constant.v		
	b) $\pi r_0^2 R^2 \sigma T^4 / r^2$		d) $R^2 \sigma T^4/r^2$	
-	indicator diagram represent	-		
P ↑ A		<i>G</i>		
)				
$B \subset C$				
В _				
	\rightarrow V			
a) The liquid state of r	natter	b) Gaseous state of matt	er	
c) Change from liquid	•	d) Change from gaseous	_	
148. The ends of two rods of different materials with their thermal conductivities, radii of cross-sections and				
			nce. If the rate of flow of heat	
-	ral/s, that in the shorter rod i			
a) 1	b) 2	c) 8	d) 16	
•	e heat most rapidly if its surfa			
a) White & polished	b) White & rough	c) Black & polished	_	
	ne distance over the top of a f	ire than it is in the side of it	t, mainly because	
a) Air conducts heat upwards				

	c) Convection takes more heat upwards				
	d) Convection, conduction and radiation all contribu	te significantly transferring	g heat upwards		
151.	We have seen that a gamma-ray does of 3 Gy is letha		=		
	energy were absorbed as heat, what rise in body tem		1		
	a) $300\mu K$ b) $700\mu K$	c) 455µK	d) 390 <i>μK</i>		
152.	A wall is made up of two layers A and B. The thickne				
	different. The thermal conductivity of <i>A</i> is double that				
	difference between the two ends is 36°C. Then the di				
	be				
	a) 6°C b) 12°C	c) 18°C	d) 24°C		
153.	The thermal conductivity of a rod is 2. What is it	•	,		
	a) 0.5 b) 1	c) 0.25	d) 2		
154	Newton's law of cooling is a special case of	9) 0120	~, <u>-</u>		
151.	a) Stefan's law b) Kirchhoff's law	c) Wien's law	d) Planck's law		
155	The spectral energy distribution of a star is max	•	•		
133.		illium at twice temperati	ure as that or sun, the		
	total energy radiated by star is	1) 0 (.1			
	a) Twice as that of the sun	b) Same as that of the si			
	c) Sixteen times as that of the sun	d) One-sixteenth of the			
156.	A particular star (assuming it as a black body) has a	-			
	wavelength in nanometers at which its radiation bec		· · · · · · · · · · · · · · · · · · ·		
	a) 48 b) 58	c) 60	d) 70		
157.	On a cold morning, a metal surface will feel colder to				
	a) Metal has high specific heat	b) Metal has high thermal			
	c) Metal has low specific heat	d) Metal has low thermal	•		
158.	In Searle's method for finding conductivity of metals		_		
	a) Is greater nearer the hot end	b) Is greater nearer to the			
	c) Is the same at all points along the bar	d) Increases as we go from	n hot end to cold end		
159.	In which process, the rate of transfer of heat is maxim				
	a) Conduction	b) Convection			
	c) Radiation	d) In all these, heat is trar	isferred with the same		
4 - 0		velocity			
160.	The temperature at which the vapour pressure of a l	iquid becomes equals to th	e external (atmospheric)		
	pressure is its	2011	13.75		
4 - 4	a) Melting point b) Sublimation point	c) Critical temperature	d) Boiling point		
161.	A black body radiates at the rate of W watts at a tem	perature T. If the temperat	ture of the body is reduced		
	to $T/3$, it will radiate at the rate of (in $Watts$)	TAZ	TA7		
	a) $\frac{W}{81}$ b) $\frac{W}{27}$	c) $\frac{W}{9}$	d) $\frac{W}{3}$		
162	For a small temperature difference between the bod	,	3		
102.	of loss heat <i>R</i> and the temperature of the body is dep		relation between the rate		
	a) 1 b) 1		d) _R ↑ ,		
	a) $_{R}$ \uparrow	c) _R /			
		0			
		θ	$\overbrace{Q} \qquad \stackrel{\theta}{\theta}$		
	θ 0 θ	•	σ		

b) Heat is radiated upwards

163. There are two identical vessels filled with equal amounts of ice. The vessels are of different metals., If the ice melts in the two vessels in 20 and 35 minutes respectively, the ratio of the coefficients of thermal conductivity of the two metals is a) 4:7 c) 16:49 d) 49:16 164. The dimensions of thermal resistance are c) $ML^2T^{-3}K$ a) $M^{-1}L^{-2}T^3K$ b) $ML^2T^{-2}K^{-1}$ d) $ML^2T^{-2}K^{-2}$ 165. Five identical rods are joined as shown in figure. Point A and C are maintained at temperature 120°C and 120°*C* 20°C respectively. The temperature of junction *B* will be b) 80°C c) 70°C 166. While measuring the thermal conductivity of a liquid, we keep the upper part hot and lower part cool, so that a) Convection may be stopped b) Radiation may be stopped c) Heat conduction is easier downwards d) It is easier and more convenient to do so 167. A lead bullet of 10 g travelling at 300 m/s strikes against a block of wood and comes to rest. Assuming 50% of heat is absorbed by the bullet, the increase in its temperature is (specific heat of lead = 150J/kg, K) a) 100°C b) 125°C c) 150°C d) 200°C 168. A liquid cools down from 70°C to 60°C in 5 *minutes*. The time taken to cool it from 60°C to 50°C will be a) 5 minutes b) Lesser than 5 minutes c) Greater than 5 minutes d) Lesser or greater than 5 minutes depending upon the density of the liquid 169. Two identical bodies have temperatures 277°C and 67°C. If the surroundings temperature is 27°C, the ratio of loss of heats of the two bodies during the same interval of time is(approximately) a) 4:1 b) 8:1 d) 19:1 c) 12:1 170. The absolute zero is the temperature at which a) Water freezes b) All substances exist in solid state c) Molecular motion ceases d) None of the above 171. A copper block of mass 4 kg is heated in a furnance to a temperature 425°C and then placed on a large ice block. The mass of ice that will melt in this process will be (Specific heat of copper=500 J kg^{-1} °C⁻¹ and heat of fusion of ice=336 k J kg^{-1}) a) 0.5 kg c) 1.5 kg d) 2.5 kg 172. Which of the substance *A*, *B* or *C* has the highest specific heat? The temperature *vs* time graph is shown

Temperature (T) Time (t)

a) A

b) B

c) C

d) All have equal specific heat

173. A spherical black body with a radius of 12 cm radiates 440 W power at 500K. If the radius were halved and the temperature doubled, the power radiated in watt would be

	a) 225	b) 450	c) 900	d) 1800
174.		uid of specific heat 0.2 at a t	,	,
		.5 at a temperature 20°C, so	-	
	32°C	-	_	
	a) 175 <i>gm</i>	b) 300 <i>g</i>	c) 295 gm	d) 375 <i>g</i>
175.	Equal masses of two liqui	ds are filled in two similar (calorimeters. The rate of co	ooling will
	a) Depend on the nature h	neats of liquids	b) Depend on the specific	heats of liquids
	c) Be same for both the lie	quids	d) Depend on the mass of	the liquids
176.	The wavelength of the r	adiation emitted by a bo	dy depends upon	
	a) The nature of the sur	face	b) The area of the surfac	ce
	c) The temperature of t	he surface	d) All of the above facto	rs
177.		tor is located at the top sect	tion so that	
	a) The entire of the refrig	erator is cooled quickly du	e to convection	
	b) The motor is not heate	d		
	c) The heat gained from t	he environment is high		
	d) The heat gained from t	he environment is low		
178.	A black body of mass 34	4.38 g and surface area 1°	9.2 cm² is at an initial ter	nperature of 400 K. It is
	allowed to cool inside a	n evacuated enclosure ke	ept at constant temperati	ure 300 K. The rate of
	cooling is 0.04 °Cs ⁻¹ . Th	e specific heat of the bod	y in J $kg^{-1}K^{-1}$ is	
	(Stefan's constant $\sigma = 5$			
	a) 2800	b) 2100	c) 1400	d) 1200
179.	Two slabs A and B of eq	jual surface area are plac	ed one over the other su	ch that their surfaces are
		The thickness of slab A is		
	•	s twice that of <i>B</i> . The first		
	•			ontact of their surfaces is
	a) 62.5°C		c) 55°C	d) 85°C
180	Thermoelectric thermome		, 55 G	u) 00 u
1001	a) Photoelectric effect	b) Seebeck effect	c) Compton effect	d) Joule effect
181.	=	f 20 cm diameter is heate		* *
	-	of linear expansion for alu		23×10^{-6} /°C)
	a) 28.9 cc	b) 2.89 cc	c) 9.28 cc	d) 49.8 cc
182		es of radii $r_{\!\scriptscriptstyle 1}$ and $r_{\!\scriptscriptstyle 2}$ and wit		
102.	the same power. Then the		ir surface temperature T_1 as	nd 12 respectively radiate
	_		$(T_4)^2$	$(T_4)^4$
	a) $\left(\frac{T_2}{T_1}\right)^2$	b) $\left(\frac{T_2}{T_1}\right)^4$	c) $\left(\frac{T_1}{T_2}\right)^2$	d) $\left(\frac{T_1}{T_2}\right)^4$
	\1 /	itted radiation of a black bo	dv at 27°C and 927°C is	(12)
100.	a) 1:4	b) 1 : 16	c) 1:64	d) 1:256
184.	-	nce on the two sides of a w		
	conductivity			•
	a) Remains unchanged	b) Is doubled	c) Is halved	d) Becomes four times
185.		a rod increases from t to t	$+\Delta t$, its moment of inertia	increases from I to $I + \Delta I$.
	If α be the coefficient of li	near expansion of the rod,	then the value of $\frac{\Delta I}{I}$ is	
			1	Δt
	a) $2\alpha\Delta t$	b) $\alpha \Delta t$	c) $\frac{\alpha \Delta t}{2}$	$\mathrm{d})\frac{\Delta t}{\alpha}$
186.	A solid sphere and a hollo	w sphere of the same mate	rial and size are heated to	the same temperature and
	allowed to cool in the sam	ne surroundings. If the temp	perature difference betwee	n each sphere and its

GPLUS EDUCATION WEB: <u>WWW.GPLUSEDUCATION.ORG</u> PHONE NO: 8583042324 Page | 17

surroundings is T, then

- a) The hollow sphere will cool at a faster rate for all values of T
- b) The solid sphere will cool at a faster rate for all values of T
- c) Both spheres will cool at the same rate for all values of *T*
- d) Both spheres will cool at the same rate only for small values of *T*
- 187. Two circular discs *A* and *B* with equal radii are blackened. They are heated to some temperature and are cooled under identical conditions. What inference do you draw from their cooling curves?

- a) A and B have same specific heats
- b) Specific heat of A is less

c) Specific heat of *B* is less

- d) Nothing can be said
- 188. A quantity of heat required to change the unit mass of a solid substance, from solid state to liquid state, while the temperature remains constant, is known as
 - a) Latent heat
- b) Sublimation
- c) Hoar frost
- d) Latent heat of fusion
- 189. A black body emits radiations of maximum intensity for the wavelength of 5000Å when the temperature of the body is 1227°C. If the temperature of the body is increased by 1000°C, the maximum intensity would be observed at
 - a) 1000Å
- b) 2000Å
- c) 5000Å
- d) 3000Å
- 190. The maximum wavelength of radiation emitted at 2000K is $4\mu m$. What will be the maximum wavelength of radiation emitted at 2400 K
 - a) 3.33μm
- b) 0.66μm
- c) 1um

d) 1m

- 191. Expansion during heating
 - a) Occurs only in solids

- b) Increases the weight of a material
- c) Decreases the density of a material
- d) Occurs at the same rate for all liquids and solids
- 192. A hot metallic sphere of radius r radiates heat. It's rate of cooling is
 - a) Independent of *r*
- b) Proportional to *r*
- c) Proportional to r^2
- d) Proportional to 1/r
- 193. A black body of surface area $10cm^2$ is heated to 127° C and is suspended in a room at temperature 27° C. The initial rate of loss of heat from the body at the room temperature will be
 - a) 2.99 W
- b) 1.89 W
- c) 1.18 W
- d) 0.99 W
- 194. The temperature of a metal block is increased from 27°C to 84°C. The rate of the radiated energy from the block will increase approximately
 - a) 2 times
- b) 4 times
- c) 8 times
- d) 16 times
- 195. 'Stem Correction' in platinum resistance thermometers are eliminated by the use of
 - a) Cells

- b) Electrodes
- c) Compensating leads
- d) None of the above
- 196. Liquid is filled in a vessel which is kept in a room with temperature 20° C. When the temperature of the liquid is 80° C, then it loses heat at the rate of $60 \ cal/s$. What will be the rate of loss of heat when the temperature of the liquid is 40° C
 - a) 180 cal/s
- b) 40 *cal/s*
- c) 30 *cal/s*
- d) 20 cal/s
- 197. In which of the following process convection does not take place primarily
 - a) Sea and land breeze

- b) Boiling of water
- c) Warming of glass of bulb due to filament
- d) Heating air around a furnace

100		1. C. E000	200 II. i	1
198.	A body takes 5 minutes for minutes. Temperature of	O .	O°C. Its temperature comes of	down to 33.33°C in next 5
	a) 15°C	b) 20°C	c) 25°C	d) 10°C
199.	-			efficient of cubical expansion
	of the silver rod is			rr
	a) 5.7×10^{-5} /°C	b) 0.63×10^{-5} /°C	c) 1.9×10^{-5} /°C	d) 16.1×10^{-5} /°C
200.			Vm ⁻² at a high temperatu	
	temperature is reduced			
				E
	a) $\frac{E}{2}$	b) 2 <i>E</i>	c) $\frac{E}{4}$	d) $\frac{E}{16}$
201	4		od at 0°C so that the length	10
201.	longer than the copper ro		od de o d'oo that the length	of the section is sem
	α (Steel) = 1.1 × 10 ⁻⁵ °C ⁻			
	α (Copper)= 1.7 × 10 ⁻⁵ °			
	a) 14.17 cm; 9.17 cm		b) 9.17 cm, 14.17 cm	
	c) 28.34 cm; 18.34 cm		d) 14.17 cm, 18.34 cm	
202.	If a liquid is heated in wei	ghtlessness, the heat is t		
	a) Conduction	,	J	
	b) Convection			
	c) Radiation			
	d) Neither, because the lie	quid cannot be heated in	weightlessness	
203.	A black body at a tempera	nture of $1640~K$ has the w	vavelength corresponding to	maximum emission equal
	_		-	the moon, if the wavelength
	corresponding to maximu	im emission is 14.35μ is		
	a) 100 <i>K</i>	b) 150 <i>K</i>	c) 200 K	d) 250 <i>K</i>
204.	The state of the s	r	AND AN OWNER AND IN THE	nded by a cylindrical shell of
			ial of thermal conductivity <i>I</i>	_
			temperatures. There is no lo	
	cylindrical surface and the	·	e. The effective thermal con	
	a) $K_1 + K_2$	b) $\frac{K_1 K_2}{K_1 + K_2}$	c) $\frac{K_1 + 3K_2}{4}$	d) $\frac{3K_1 + K_2}{4}$
205	Water is used to cool radi			4
203.	a) Of its lower density	ators of engines, because	b) It is easily available	
	c) It is cheap		d) It has high specific he	at
206.	•	modulus ν and coefficie	ent of thermal expansion	
		·	mperature is raised by t°	
	developed in it is		imperature is raised by v	s) the initial stress
	αt	ν		I
	a) $\frac{uv}{v}$	b) $\frac{\gamma}{\alpha E}$	c) $\gamma \alpha t$	d) $\frac{I}{v\alpha t}$
207	Out of the following in w	662	erature of the solution be hi	•
207.	completely dissolved	men vesser win the tempe	crature of the solution be m	Sher after the safe is
) (
	Water	Water		
	Salt	Salt in		
	crystal	power		
		form		
	a) <i>A</i>		b) <i>B</i>	
	c) Equal in both		d) Information is not suf	ficient

208. If black wire of platinum is heated, then its colour f	irst annear red then vello	w and finally white It can be
understood on the basis of	inscappear rea, then yello	w and imany winter it can be
a) Wien's displacement law	b) Prevost theory of hea	at exchange
c) Newton's law of cooling	d) None of the above	
209. The freezing point of the liquid decreases when pre-	•	quid
a) Expands while freezing	b) Contracts while freez	_
c) Does not change in volume while freezing	d) None of these	
210. The end A of a rod AB of length 1 m is maintain	ned at 100°C and the end	l B at 10° C. The
temperature at a distance of 60 cm from the en		
a) 64°C b) 36°C	c) 46°C	d) 72°C
211. At temperature <i>T</i> , the power radiated by a body is	•	•
it will be	¢	
a) 3 <i>Q</i> b) 9 <i>Q</i>	c) 27 Q	d) 81 <i>Q</i>
212. Ice starts forming in a lake with water at 0°C, when	-	
for 1 cm of ice to be formed is 7 h, the time taken for		
a) 7 h	b) Less than 7 h	
c) More than 7 h but less than 14 h	d) More than 14 h	
213. Woolen clothes are used in winter season because	woolen clothes	
a) Are good sources for producing heat	b) Absorb heat from sur	rroundings
c) Are bad conductors of heat	d) Provide heat to body	continuously
214. Let there be four articles having colours blue, red, b	olack and white. When the	y are heated together and
allowed to cool, which article cool at the earliest		
a) Blue b) Red	c) Black	d) White
215. Which of the following law states that "good absorb		
a) Stefan's law b) Kirchhoff's law	c) Planck's law	d) Wien's law
216. Which of the following statements is true/correct		
a) During clear nights, the temperature rises stead		
b) Newton's law of cooling, an appropriate form of		
c) The total energy emitted by a black body per un	it time per unit area is pro	portional to the square of its
temperature in the Kelvin scale	1.4 1	4000 // 12000 //
Two spheres of the same material have radii $1m$	•	
d) respectively. The energy radiated per second by	the first sphere is greater	than that radiated per second
by the second sphere		
217. For a perfectly black body, its absorptive power is a) 1 b) 0.5	c) 0	d) Infinity
a) 1 b) 0.5 218. Six identical metallic rods are joined together in a p		•
maintained at temperature 60°C and 240°C. The ter	_	
maintained at temperature 00°C and 240°C. The temperature	imperature of the junction	b will be
$A \qquad B \qquad C \qquad D$		
a) 120°C b) 150°C	c) 60°C	d) 80°C
219. The relative humidity on a day when partial pr	,	
(Take vapour pressure of water at this temper	-	
a) 70% b) 40%	c) 75%	d) 25%
220. The radiant energy from the sun incident normally		
have been the radiant energy incident normally on		
present one	the cartif, if the suit had a	comperature twice of the
a) $160 kcal/m^2 min$ b) $40 kcal/m^2 min$	c) $320 kcal/m^2 min$	d) $80 \ kcal/m^2 \ min$

221. A metal rod of length 2m has cross sectional areas 2A and A as shown in figure. The ends are maintained at temperatures 100°C and 70°C. The temperature at middle point C is 70°C 2A a) 80°C b) 85°C c) 90°C d) 95°C 222. Which of the following is the unit of specific heat a) $I kg^{\circ}C^{-1}$ d) I/kg°C⁻² b) J/kg°C c) $kg^{\circ}C/J$ 223. A body of area $1cm^2$ is heated to a temperature 1000K. The amount of energy radiated by the body in 1 s is (Stefan's constant $\sigma = 5.67 \times 10^{-8} Wm^{-2}K^{-4}$) a) 5.67 joule b) 0.567 joule c) 56.7 joule d) 567 joule 224. The cause of Fraunhoffer lines is a) Reflection of radiations by chromosphere b) Absorption of radiations by chromosphere c) Emission of radiations by chromosphere d) Transmission of radiations by chromosphere 225. A bucket full of hot water is kept in a room. It cools from 75°C to 70°C in t_1 minutes, from 70°C to 65°C in t_2 minutes and from 65°C to 60°C in t_3 minutes. Then, a) $t_1 < t_2 < t_3$ b) $t_1 = t_2 = t_3$ c) $t_1 < t_2 > t_3$ d) $t_1 > t_2 > t_3$ 226. The quantity of heat which crosses per unit area of a metal plate during conduction depends upon b) The temperature gradient perpendicular to the a) The density of the metal area c) The temperature to which the metal is heated d) The area of the metal plate 227. Two cylinders *P* and *Q* have the same length and diameter and are made of different materials having thermal conductivities in the ratio 2:3. These two cylinders are combined to make a cylinder. One end of Pis kept of 100° C and another end of Q at 0° C. The temperature at the interface of P and Q is a) 30°C b) 40°C c) 50°C 228. A metal sphere of radius r and specific heat c is rotated about an axis passing through its centre at a speed of n rotations per second. It is suddenly stopped and 50% of its energy is used in increasing its temperature. Then the rise in temperature of the sphere is b) $\frac{1}{10} \frac{\pi^2 n^2}{r^2 c}$ a) $\frac{2}{5} \frac{\pi^2 n^2 r^2}{c}$ c) $\frac{7}{9}\pi r^2 n^2 c$ d) $5 \left[\frac{\pi rn}{14c} \right]^{-2}$ 229. Temperature of water at the surface of lake is -20° C. Then temperature of water just below the lower surface of ice layer is b) 0°C c) 4°C d) -20° C 230. A black body at 227°C radiates heat at the rate of 7 Cal/cm^2s . At a temperature of 727°C, the rate of heat radiated in the same units will be c) 112 d) 80 231. The spectrum from a black body radiation is a a) Line spectrum b) Band spectrum c) Continuous spectrum d) Line and band spectrum both 232. The densities of a liquid at 0°C and 100°C are respectively 1.0127 and 1. A specific gravity bottle is filled with 300 g of the liquid at 0°C upto the brim and it is heated to 100°C. Then the mass of the liquid expelled in grams is (Coefficient of linear expansion of glass= $9 \times 10^{-6} \, {}^{\circ}\text{C}^{-1}$) c) $\frac{3.81}{1.0127}$ 233. One gram of ice is mixed with one gram of steam. At thermal equilibrium the temperature of mixture is

d) 80°C

c) 55°C

a) 0°C

b) 100°C

234. A rod of length 20 <i>cm</i> i	s made of metal. It expa	ands by $0.075cm$ when it	s temperature is raised from 0°C to	
100°C. Another rod of	a different metal <i>B</i> havi	ng the same length expa	nds by $0.045~cm$ for the same	
change in temperature	. A third rod of the same	e length is composed of t	wo parts, one of metal A and the	
other of metal B . This	rod expands by 0.060 <i>cr</i>	n for the same change in	temperature. The portion made of	
metal A has the length				
a) 20 <i>cm</i>	b) 10 <i>cm</i>	c) 15 <i>cm</i>	d) 18 <i>cm</i>	
235. Two solid spheres <i>A</i>	and B made of the sai	me material have radii	$r_{\!\scriptscriptstyle A}$ and $r_{\!\scriptscriptstyle B}$ respectively. Both the	
			ions valid for Newton's law of	
		emperature of A and B		
a) $\frac{r_A}{r_B}$	b) $\frac{r_B}{r_A}$	c) $\frac{r_A^2}{r_B^2}$	d) $\frac{r_B^2}{r_A^2}$	
Ь	A		А	
			ed to 100°C, its volume becomes	
		pefficient of the gas at no		
a) 0.0015/°C	b) 0.0045/°C	c) 0.0025/°C	d) 0.0033/°C	
_	•		.00°C are 40cm of mercury and	
	its reading at an unkn	nown temperature is 10	00cm of mercury column, then	
the temperature is				
a) 100°C	b) 50°C	c) 25°C	d) 300°C	
238. At what temperature t	he centigrade (Celsius)	and Fahrenheit, reading	s are the same	
a) -40°	b) +40°	c) 36.6°	d) -37°	
239. An ideal black body a	at room temperature i	is thrown into a furnan	ce. It is observed that	
a) It is the darkest bo	ody at all times	h 30		
b) It cannot be distin	guished at all times	١١.,		
	arkest body and later i	it becomes brightest		
	•	it cannot be distinguisl	ned	
			s heated and <i>B</i> is cooled, the water	
a) Level in <i>B</i> decreases		b) Will overflow		
c) Will overflow in <i>B</i> o				
c) Will overflow in <i>B</i> only d) Will overflow in both <i>A</i> and <i>B</i> 241. The sprinkling of water reduces slightly the temperature of a closed room because				
	ater is less than that o		sea room seedase	
b) Specific heat if wa		of the room		
		ion		
•	tent heat of vaporisat	1011		
d) Water is a bad con				
242. The value of Stefan's co		13 5 6 5 40 5 741	2 224	
a) $5.67 \times 10^{-8} W/m^2 - 10^{-1} W/m^2 - 10$		b) $5.67 \times 10^{-5} W$	$/m^2$ - K^4	
c) $5.67 \times 10^{-11} W/m^2$		d) None of these		
243. In MKS system, Stefan'	-	-		
a) 1	b) 10 ³	c) 10 ⁵	d) 10 ²	
			nickness and having thermal	
		of brass is at 100°C and th	hat of copper at 0°C, the	
temperature of interfa		2 4000	12.4000	
a) 80°C	b) 20°C	c) 60°C	d) 40°C	
245. A gas in an airtight con	tainer is heated from 2.	-	_	
a) Increase slightly		b) Increase consi	-	
c) Remain the same		d) Decrease sligh	-	
246. The maximum energy in the thermal radiation from a hot source occurs at a wavelength of 11×10^{-5} cm. According to Wien's law, the temperature of the source (on Kelvin scale) will be n times the temperature				
According to wien's la	w. me temperature of th	ne source (on Keivin Scal	er will be n times the temperature	

of another source (on Kelvin scale) for which the wavelength at maximum energy is $5.5 \times 10^{-5} cm$. The value n is

a) 2

b) 4

c) $\frac{1}{2}$

d) 1

247. Work done in converting one gram of ice at -10°C into steam at 100°C is

a) 3045 [

b) 6056 I

c) 721 I

d) 616 I

248. Two rods of same length and cross section are joined along the length. Thermal conductivities of first and second rod are K_1 and K_2 . The temperature of the free ends of the first and second rods are maintained at $heta_1$ and $heta_2$ respectively. The temperature of the common junction is

b) $\frac{K_2K_1}{K_1 + K_2}(\theta_1 + \theta_2)$ c) $\frac{K_1\theta_1 + K_2\theta_2}{K_1 + K_2}$

d) $\frac{K_2\theta_1 + K_1\theta_2}{K_1 + K_2}$

249. One end of a copper rod of length 1.0 m and area of cross-section $10^{-3}m^2$ is immersed in boiling water and the other end in ice. If the coefficient of thermal conductivity of copper is 92 cal/m-s-°C and the latent heat of ice is $8 \times 10^4 cal/kg$, then the amount of ice which will melt in one minute is

a) $9.2 \times 10^{-3} kg$

b) $8 \times 10^{-3} kg$

c) $6.9 \times 10^{-3} kg$

d) $5.4 \times 10^{-3} kg$

250. The temperature gradient in a rod of $0.5 m \log is 80^{\circ} C/m$. If the temperature of hotter end of the rod is 30°C, then the temperature of the cooler end is

b) -10° C

c) 10°C

251. If between wavelength λ and $\lambda + d\lambda$, e_{λ} and a_{λ} be the emissive and absorptive powers of a body and E_{λ} be the emissive power of a perfectly black body, then according to Kirchoff's law, which is true

a) $e_{\lambda} = a_{\lambda} = E_{\lambda}$

b) $e_{\lambda}E_{\lambda}=a_{\lambda}$

c) $e_{\lambda} = a_{\lambda} E_{\lambda}$

d) $e_{\lambda}a_{\lambda}E_{\lambda} = \text{constant}$

252. Good absorbers of heat are

a) Poor emitters

b) Non-emitters

c) Good emitters

d) Highly polished

253. Infrared radiations are detected by

a) Spectrometer

b) Pyrometer

c) Nanometer

d) Photometer

254. Two temperature scales *A* and *B* are related by

 $\frac{A-42}{110} = \frac{B-72}{220}$. At which temperature two scales have the same reading? a) -42°C b) -72°C c) 12°C

d) 40°C

255. The graph, shown in the adjacent diagram, represents the variation of temperature (T) of two bodies, x and y having same surface area, with time (t) due to the emission of radiation. Find the correct relation between the emissivity and absorptivity power of the two bodies.

a) $E_x > E_v$ and $a_x < a_v$

b) $E_x < E_x$ and $a_x > a_y$

c) $E_x > E_x$ and $a_x > a_y$

d) $E_x < E_x$ and $a_x < a_y$

256. In heat transfer, which method is based on gravitation

a) Natural convection

b) Conduction

c) Radiation

d) Stirring of liquids

257. Three rods made of same material and having same cross-section are joined as shown in the figure. Each rod is of same length. The temperature at the junction of the three rods is

- 258. There is a rough black spot on a polished metallic plate. It is heated upto 1400 *K* approximately and then at once taken in a dark room. Which of the following statements is true
 - a) In comparison with the plate, the spot will shine more
 - b) In comparison with the plate, the spot will appear more black
 - c) The spot and the plate will be equally bright
 - d) The plate and the black spot can not be seen in the dark room
- 259. The quantities of heat required to raise the temperatures of two copper spheres of radii r_1 and r_2 ($r_1 = 1.5r_2$) through 1 K are in the ratio of
 - a) 1

b) $\frac{3}{2}$

c) $\frac{9}{4}$

- d) $\frac{27}{8}$
- 260. The energy distribution E with the wavelength (λ) for the black body radiation at temperature T kelvin is shown in the figure. As the temperature is increased the maxima will

- a) Shift towards left and become higher
- b) Rise high but will not shift
- c) Shift towards right and become higher
- d) Shift towards left and the curve will become broader
- 261. The coefficient of volumetric expansion of mercury is 18×10^{-5} /°C. A thermometer bulbs has a volume $10^{-6}m^3$ and cross section of stem is $0.004~cm^2$. Assuming that bulb is filled with mercury at 0°C then the length of the mercury column at 100°C is
 - a) 18.8 mm
- b) 9.2 mm
- c) 7.4 cm
- d) 4.5 cm
- 262. A body of length 1m having cross sectional area $0.75m^2$ has heat flow through it at the rate of $6000 \, Joule/s$. Then find the temperature difference if $K = 200 \, Jm^{-1}K^{-1}$
 - a) 20°C

b) 40°C

c) 80°C

- d) 100°C
- 263. Wien's displacement law for emission of radiation can be written as
 - a) λ_{max} is proportional to absolute temperature(T)
 - b) λ_{max} is proportional to square of absolute temperature(T^2)
 - c) λ_{\max} is inversely proportional to square of absolute temperature(T)
 - d) λ_{\max} is inversely proportional to square of absolute temperature T^2) $(\lambda_{\max} = \text{wavelength whose energy density is greatest})$
- 264. An ideal gas is expanding such that $PT^2 = \text{constant}$. The coefficient of volume expansion of the gas is
 - a) $\frac{1}{T}$

b) $\frac{2}{T}$

c) $\frac{3}{T}$

- d) $\frac{4}{T}$
- 265. Amount of heat required to convert 10 g of ice to water at 20 $^{\circ}\text{C}\,$ is
 - a) 80 cal
- b) 100 cal
- c) 1000 cal
- d) 540 cal
- 266. Two metallic spheres S_1 and S_2 are made of the same material and have identical surface finish. The mass of S_1 is three times that of S_2 . Both the spheres are heated to the same high temperature and placed in the

	rate of cooling of S_1 to tha	t of S_2 is		
	a) 1/3	b) $(1/3)^{1/3}$	c) $1/\sqrt{3}$	d) $\sqrt{3}/1$
267	. On investigation of light fi	rom three different stars A	, B and C , it was found that	•
	intensity of red colour is r	naximum, in $\it B$ the intensit	y of blue colour is maximu	m and in C the intensity of
	yellow colour is maximun	n. From these observations	it can be concluded that	
	a) The temperatures of A	is maximum, B is minimum	n and C is intermediate	
	b) The temperatures of A	is maximum, C is minimur	n and B is intermediate	
	c) The temperatures of ${\it B}$	is maximum, A is minimum	n and C is intermediate	
	d) The temperatures of <i>C</i>	is maximum, B is minimum	n and A is intermediate	
268	. A body has same tempe	rature as that of the sur	rounding. Then	
	a) It radiates same heat	as it absorbs	b) It absorbs more, radi	ates less heat
	c) It radiates more, abso	orbs less heat	d) It never radiates hea	t
269	. The area of the glass of a v	window of a room is $10 m^2$	2 and thickness $2mm$. The $ m o$	outer and inner temperature
	are 40°C and 20°C respect	tively. Thermal conductivit	ty of glass in MKS system is	0.2. The heat flowing in the
	room per second will be			
	a) 3×10^4 joules	b) 2×10^4 joules		d) 45 joules
270	_		P watts to remain in the m	-
	= =	turned off, the sample com	ipletely solidifies in time t s	sec. What is the latent heat
	of fusion of the substance	D.	222	<u>.</u>
	a) $\frac{Pm}{t}$	b) $\frac{Pt}{m}$	c) $\frac{m}{Rt}$	d) $\frac{t}{Pm}$
271	· ·	116	velocity 200 m/s. If the in	1 110
2/1	•		d between the bullet and	• •
	-			_
			acity of lead=125Jkg ⁻¹ I	
0.70	a) 80°C	b) 60°C	c) 40°C	d) 120°C
2/2	-			s from R to $2R$, when the
			it it was previously, will b	
	a) 4	b) 16	c) 32	d) 64
273		of copper ($\alpha = 1.8 \times 10^{-3}$	$^{-5}$ K ⁻¹) and steel ($\alpha = 1.7$	$2 \times 10^{-5} \mathrm{K}^{-1}$) is heated.
	Then			
	a) It bends with steel or	n concave side	b) It bends with copper	on concave side
	c) It does not expand		d) Data is insufficient	
274				up and mixed the cold milk
			ixed the cold milk when the	e friend comes. Then the tea
	will be hotter in the cup o	f		
	A comment			
		IA .		
	a) <i>A</i>		b) <i>B</i>	
	c) Tea will be equally hot	-	d) Friend's cup	
275	. If the radius of a star is R	and it acts as a black body,	what would be the temper	ature of the star, in which

same room having lower temperature but are thermally insulated from each other. The ratio of the initial

the rate of energy production is Q

- a) $Q/4\pi R^2\sigma$
- c) $(4\pi R^2 Q/\sigma)^{1/4}$

- b) $(Q/4\pi R^2\sigma)^{-1/2}$

d) $(Q/4\pi R^2 \sigma)^{1/4}$ (σ stands for stefan's constant)

- 276. A hammer of mass 1kg having speed of 50 m/s, hit a iron nail of mass 200 gm. If specific heat of iron is $0.105 \ cal/gm^{\circ}C$ and half the energy is converted into heat, the raise in temperature of nail is
 - a) 7.1°C

b) 9.2°C

- c) 10.5°C
- 277. Newton's law of cooling holds good only, if the temperature difference between the body and the surroundings is
 - a) Less than 10°C
- b) More than 10°C
- c) Less than 100°C
- d) More than 100°C
- 278. A glass flask of volume one litre at 0°C is fille, level full of mercury at this temperature. The flask and mercury are now heated to 100°C. How much mercury will spill out, if coefficient of volume expansion of mercury is 1.82×10^{-4} /°C and linear expansion of glass is 0.1×10^{-4} /°C respectively
 - a) 21.2 cc
- b) 15.2 *cc*
- c) 1.52 cc
- 279. One end of a thermally insulated rod is kept at a temperature T_1 and other at T_2 . The rod is composed of two sections of lengths l_1 and l_2 and thermal conductivities K_1 and K_2 respectively. The temperature at the interface of the two sections is

- a) $(K_2l_2T_1 + K_1l_1T_2) / (K_1l_1 + K_2l_2)$
- b) $(K_2l_1T_1 + K_1l_2T_2) / (K_2l_1 + K_1l_2)$
- c) $(K_1l_2T_1 + K_2l_1T_2) / (K_1l_2 + K_2l_1)$
- d) $(K_1l_1T_1 + K_2l_2T_2) / (K_1l_1 + K_2l_2)$
- 280. Variation of radiant energy emitted by sun, filament of tungsten lamp and welding are as a function of its wavelength is shown in figure. Which of the following option is the correct match?

- a) Sun- T_1 , tungsten filament- T_2 , welding arc T_3
- b) Sun- T_2 , tungsten filament- T_1 , welding arc T_3
- c) Sun- T_3 , tungsten filament- T_2 , welding arc T_1
- d) Sun- T_1 , tungsten filament- T_3 , welding arc T_2
- 281. When a copper ball is heated, the largest percentage increase will occur in its
 - a) Diameter
- b) Area

- c) Volume
- d) Density
- 282. Two spheres of radii in the ratio 1:2 and densities in the ratio 2:1 and of same specific heat, are heated to same temperature and left in the same surrounding. Their rate of cooling will be in the ratio
 - a) 2:1

b) 1:1

c) 1:2

d) 1:4

- 283. Heat travels through vacuum by
 - a) Radiation
- b) Conduction
- c) Convection
- d) None of these
- 284. If a black body emits 0.5 J of energy per second when it is at 27°C, then the amount of energy emitted by it when it is at 627°C will be
 - a) 40.5 J
- b) 162 J
- c) 13.5 J
- d) 135 J

- 285. Maximum density of H_2O is at the temperature
 - a) $32^{o}F$
- b) 39.2°F
- c) $42^{\circ}F$

- 286. If a graph is plotted taking the temperature in Fahrenheit along Y-axis and the corresponding temperature in Celsius along the *X*-axis, it will be a straight line

a) Having a + ve intercept on Y -axis	b) Having a + <i>ve</i> interce	at on V avic
	d) Having a – <i>ve</i> interce _l	
c) Passing through the origin		
287. The absolute temperatures of two black bodies are 2	-	•
wavelengths corresponding to maximum emission o	= = = = = = = = = = = = = = = = = = =	
a) 2:3 b) 3:2	c) 9:4	d) 4:9
288. A body cools in a surrounding which is at a constant		
law of cooling. Its temperature θ is plotted against t	_	
$P(\theta = \theta_2)$ and $Q(\theta = \theta_1)$. These tangents meet the	time axis at angles of ϕ_2 an	d ϕ_1 , as shown
$\theta \bigwedge$		
$\theta_2 \stackrel{-}{\longrightarrow} P$		
θ1Q		
$\theta_0 \downarrow \qquad \qquad \phi_2 \searrow \phi_1 \longrightarrow \qquad t$		
a) $\frac{\tan \phi_2}{\tan \phi_1} = \frac{\theta_1 - \theta_0}{\theta_2 - \theta_0}$ b) $\frac{\tan \phi_2}{\tan \phi_1} = \frac{\theta_2 - \theta_0}{\theta_1 - \theta_0}$	$\tan \phi_1 = \theta_1$	$\tan \phi_1 - \theta_2$
$\tan \phi_1 = \frac{1}{\theta_1 - \theta_0}$ $\tan \phi_1 = \frac{1}{\theta_1 - \theta_0}$	$\tan \phi_2 - \frac{\theta_2}{\theta_2}$	$\frac{\mathrm{d}}{\mathrm{d} \sin \phi_2} - \frac{\mathrm{d}}{\theta_1}$
289. A constant volume gas thermometer shows pressure	e reading of 50 cm and 90 c	cm of mercury at 0°C and
100°C respectively. When the pressure reading is 60	cm of mercury, the tempe	rature is
a) 25°C b) 40°C	c) 12°C	d) 12.5°C
290. There is some change in length when a 33000 N	tensile force is applied	on a steel rod of area of
cross-section 10^{-3} m ² . The change of temperatu	re required to produce t	he same elongation, if the
steel rod is heated, is (The modulus of elasticity		
expansion of steel is 1.1×10^{-5} °C ⁻¹ .		
a) 20°C b) 15°C	c) 10°C	d) 0°C
291. According to 'Newton's Law of cooling', the rate of c	,	
a) Temperature of the body	ooinig of a body is proport	ional to the
b) Temperature of the surrounding		
c) Fourth power of the temperature of the body	LACITAL	
d) Difference of the temperature of the body and the	aurroundings	
292. A hot and a cold body are kept in vacuum separated	_	the following cause
	from each other, which of	the following cause
decrease in temperature of the hot body	h) Convection	
a) Radiation	b) Convection	un ah an as d
c) Conduction	d) Temperature remains	9
293. An object is at a temperature of 400°C. At what temp		nergy twice as fast? The
temperature of the surroundings may be assumed to a) 200°C b) 200 K	c) 800°C	d) 800 <i>K</i>
294. The thermal conductivity of a material in CGS syster	•	
10 cal/s - cm^2 , then the thermal gradient will be	ii is 0.4. iii steauy state, tile	rate of flow of fleat is
,	a) 25°C/am	d) 2000 /am
	c) 25°C/ <i>cm</i>	d) 20°C/cm
295. The temperatures of two bodies <i>A</i> and <i>B</i> are respect	uvery 727 Cand 527 C. Th	e ratio n_A : n_B of the rates of
heat radiated by them is	a) 2F . O	J) (25 . 01
a) 727:327 b) 5:3	c) 25:9	d) 625 : 81
296. Two spherical bodies <i>A</i> (radius 6 cm) and <i>B</i> (ra		
respectively. The maximum intensity in the emi	-	
is at 1500 nm. Considering them to be black boo	lies, what will be the rati	o of the rate of total
energy radiated by A to that of ?		
a) 9 b) 9.5	c) 8	d) 8 . 5
297. Four rods of different radii r and length l are used to	o connect two reservoirs of	f heat at different

temperatures. Which one will conduct heat fastest?

GPLUS EDUCATION

WEB: WWW.GPLUSEDUCATION.ORG PHONE NO: 8583042324 Page | 27

	a) $r = 2$ cm, $l = 0.5$ m b) $r = 1$ cm, $l = 0.5$ m	c) $r = 2$ cm, $l = 2$ m	d) $r = 1$ cm, $l = 1$ m	
298.	A body initially at 80°C cools to 64°C in 5 min and	d to 52°C in 10 min. the t	emperature of the	
	surrounding is			
	a) 26°C b) 16°C	c) 36°C	d) 40°C	
299.	Mercury thermometers can be used to measure temp	peratures upto		
	a) 100°C b) 212°C	c) 360°C	d) 500°C	
300.	When a rod is heated but prevented from expanding,	the stress developed is ind	lependent of	
	a) Material of the rod b) Rise in temperature	c) Length of rod	d) None of above	
301.	Two rods \boldsymbol{A} and \boldsymbol{B} are of equal lengths. Their ends are	e kept between the same te	mperature and their area	
	of cross-sections are \mathcal{A}_1 and \mathcal{A}_2 and thermal conducti	vities K_1 and K_2 . The rate of	of heat transmission in the	
	two rods will be equal, if			
	a) $K_1 A_2 = K_2 A_1$ b) $K_1 A_1 = K_2 A_2$	c) $K_1 = K_2$	d) $K_1 A_1^2 = K_2 A_2^2$	
302.	A sphere, a cube and a thin circular plate, all made of		ing the same mass are	
	initially heated to a temperature of 1000°C. Which or	ne of these will cool first		
	a) Plate b) Sphere	c) Cube	d) None of these	
303.	Two conducting rods <i>A</i> and <i>B</i> of same length and cro			
	parallel as shown. In both combination a temperature			
	conductivity of <i>A</i> is 3 <i>K</i> and that of <i>B</i> is <i>K</i> then the rat	io of heat current flowing i	n parallel combination to	
	that flowing in series combination is			
	A B 3K			
	100°C 3K K 0°C 100°C K			
		>		
	(i) (ii)	1	1	
	a) $\frac{16}{3}$ b) $\frac{3}{16}$	c) $\frac{1}{1}$	d) $\frac{1}{3}$	
304	The heat is flowing through a rod of length 50 <i>cm</i> and	1	3	
304.	at 25°C and 125°C. The coefficient of thermal conduct			
	°C. The temperature gradient in the rod is	divity of the material of the	10d 13 0.0 12 Kealf III × 3 ×	
	a) 2°C/cm b) 2°C/m	c) 20°C/ <i>cm</i>	d) 20°C/m	
305.	A partition wall has two layers A and B in contanct, e	•	, ,	
0001	thickness but the thermal conductivity of layer A is twice that of layer B . If the steady state temperature			
	difference across the wall is $60K$, then the correspond		=	
	a) 10 K b) 20 K	c) 30 K	d) 40 K	
306.	A solid cube and a solid sphere of the same material h			
	temperature 120°C, then	•		
	a) Both the cube and the sphere cool down at the san	ne rate		
	b) The cube cools down faster than the sphere			
	c) The sphere cools down faster than the cube			
	d) Whichever is having more mass will cool down fas	ster		
307.	When fluids are heated from the bottom, convection	currents are produced beca	ause	
	a) Molecular motion of fluid becomes aligned			
	b) Molecular collisions take place within the fluid			
	c) Heated fluid becomes more dense than the cold flu			
	d) Heated fluid becomes less dense than the cold fluid			
308.	If the initial temperatures of metallic sphere and disc		and nature are equal, then	
	the ratio of their rate of cooling in same environment			
_	a) 1:4 b) 4:1	c) 1:2	d) 2:1	
309.	Colour of shinning bright star is an indication of its	13.4		
	a) Distance from the earth	b) Size		

c`	Temperature
٠.	1 cmpcrature

310. A liquid in a beaker has temperature $\theta(t)$ at time t and θ_0 is temperature of surroundings, then according to Newton's law of cooling the correct graph between $\log_e(\theta - \theta_0)$ and t is

- 311. Water is used to cool the radiators of engines in cars because
 - a) Of its low boiling point

b) Of its high specific heat

c) Of its low density

- d) Of its easy availability
- 312. A closed bottle containing water at 30°C is carried to the moon in a space-ship. If it is placed on the surface of the moon, what will happen to the water as soon as the lid is opened
 - a) Water will boil

b) Water will freeze

c) Nothing will happen on it

- d) It will decompose into H_2 and O_2
- 313. The factor not needed to calculate heat lost or gained when there is no change of state is
 - a) Weight
- b) Specific heat
- c) Relative density
- d) Temperature change
- 314. A black metal foil is warmed by radiation from a small sphere at temperature T and at a distance d. It is found that the power received by the foil is P'. If both the temperature and the distance are doubled, the power received by the foil will be

c) 2P

- 315. What is rise in temperature of a collective drop when initially 1 *gm* and 2 *gm* drops travel with velocities 10 cm/sec and 15 cm/sec
 - a) 6.6×10^{-3} °C
- b) 66×10^{-3} °C
- c) 660×10^{-3} °C
- 316. If γ is the ratio of specific heats and R is the universal gas constant, then the molar specific heat at constant volume C_v is given by

- 317. 10 g of ice at 0°C is mixed with 100 g of water at 50°C. What is the resultant temperature of mixture
 - a) 31.2°C
- b) 32.8°C
- c) 36.7°C
- d) 38.2°C
- 318. The thermal radiation from a hot body travels with a velocity of
 - a) $330 \, ms^{-1}$
- b) $2 \times 10^8 \ ms^{-1}$
- c) $1200 \, ms^{-1}$
- d) $3 \times 10^8 \ ms^{-1}$
- 319. Water and turpentine oil (specific heat less than that of water) are both heated to same temperature. Equal amounts of these placed in identical calorimeters are then left in air

- a) Their cooling curves will be identical
- b) A and B will represent cooling curves of water and oil respectively
- c) B and A will represent cooling curves of water and oil respectively
- d) None of the above
- 320. The study of physical phenomenon at low temperatures (below liquid nitrogen temperature) is called
 - a) Refrigeration
- b) Radiation
- c) Cryogenics
- d) Pyrometry

- 321. Solids expand on heating because
 - a) Kinetic energy of the atoms increases
 - b) Potential energy of the atoms increases
 - c) Total energy of the atoms increases

a) 1 <i>hour</i>	b) 191 <i>hours</i>	c) 19.1 <i>hours</i>	d) 1.91 <i>hours</i>	
323. The radiation emi	tted by a star A is 10,000 tim	nes that of the sun. If the	surface temperature of the	
sun and the star A	sun and the star A are 6000 K and 2000 K respectively, the ratio of the radii of the star A and the			
sun is	_			
a) 300:1	b) 600:1	c) 900:1	d) 1200:1	
$324.0.1 \text{ m}^3$ of water at	80°C is mixed with 0.3m ³ of	water at 60°C. The final	temperature of the	
mixture is			•	
a) 65°C	b) 70°C	c) 60°C	d) 75°C	
325. When a bimetallic s		,,	.,,	
a) Does not bend at	-			
b) Gets twisted in tl				
	of an arc with the more expan	dable metal outside		
d) Bends in the forr	n of an arc with the more expar	ndable metal inside		
326. Two rods of the sa	ame length and diameter hav	ring thermal conductiviti	ies K_1 and K_2 are joined in	
parallel. The equiv	valent thermal conductivity o	of the combination is		
K_1K_2		K_1K_2	1) / II II	
a) $\frac{K_1 K_2}{K_1 + K_2}$	b) $K_1 + K_2$	c) $\frac{K_1K_2}{2}$	d) $\sqrt{K_1}K_2$	
327. Absolute scale of te	mperature is reproduced in the	e laboratory by making use	e of a	
a) Radiation pyrom	eter			
b) Platinum resista	nce thermometer			
c) Constant volume	helium gas thermometer			
d) Constant pressu	re ideal gas thermometer	CATION		
328. The temperature	at which a black body ceases	to radiate energy, is		
a) Zero	b) 273 K	c) 30 K	d) 100 K	
329. Two identical con	ducting rods are first connec	cted independently to tw	o vessels, one containing	
water at 100°C an	d the other containing ice at	0°C. In the second case,	the rods are joined end to	
end and connecte	d to the same vessels. Let $q_{\scriptscriptstyle 1}$	and q_2 gs ⁻¹ be the rate of	of melting of ice in the two	
cases respectively	7. The ratio $\frac{q_1}{a}$ is			
1	42	4	1	
a) $\frac{1}{2}$	b) $\frac{2}{1}$	c) 1	d) $\frac{1}{4}$	
	he thickness d_1 and d_2 . Their	r thermal conductivities	are K_1 and K_2 respectively.	
	. The free ends of the combir			
-	$_{1} > \theta_{2}$. The temperature θ			
a) $\frac{1}{\theta_1 + \theta_2}$	b) $\frac{K_1\theta_1d_1 + K_2\theta_2d_2}{K_1d_2 + K_2d_1}$	c) $\frac{1}{K_1 d_2 + K_2 d_1}$	d) $\frac{1}{K_1 + K_2}$	
1 <i>L</i>	Fahrenheit thermometer are di	1 2 2 1	1 2	
_	ahrenheit thermometer registe			
the Centigrade ther			F	
a) 30°	b) 40°	c) 60°	d) 80°	
•	surface temperature T while st	ar B has radius $4r$ and sur	face temperature $T/2$. The	
	of two starts, P_A : P_B is		•	
a) 16:1	b) 1:16	c) 1:1	d) 1:4	
GDITIS EDITICATION	WER: WWW GDITISEDITOAT	ION ORG DUONE	NO: 8583042324 Pagal 30	

d) The potential energy curve is asymmetric about the equilibrium distance between neighbouring atoms 322. A 5cm thick ice block is there on the surface of water in a lake. The temperature of air is -10° C; how much

time it will take to double the thickness of the block $(L = 80 \ cal/g, K_{ice} = 0.004 \ erg/s$ -k, $d_{ice} = 0.92 \ g \ cm^{-3})$

				-,
333	temperature of the surro	oundings is 40°C. The ratio	peratures 100°C and 80°C roof the respective rates of co	
	two bodies at $t = 0$ will be			
	a) $R_1: R_2 = 3: 2$		c) $R_1: R_2 = 2:3$	
334	_			c , $10\ cm$ of nickel and $15\ cm$
	of aluminium. Each part	being in perfect thermal co	ntact with the adjoining par	rt. The copper end of the
	composite rod is maintai	ned at 100°C and the alum	inium end at 0°C. The whole	e rod is covered with belt so
	that no heat loss occurs a	at the sides. If $K_{Cu} = 2K_{Al}$ a	$nd K_{Al} = 3K_{Ni}, then what w$	vill be the temperatures of
	Cu - Ni and $Ni - Al$ jund	ctions respectively		
	Cu Ni Al			
	100°C	0° <i>C</i>		
	a) 23.33°C and 78.8°C	b) 83.33°C and 20°C	c) 50°C and 30°C	d) 30°C and 50°C
335		ect is $140^{\circ}F$, then its tempe	•	,
	a) 105°C	b) 32°C	c) 140°C	d) 60°C
336	-	-	,	ture the wavelength will be
	$2.8 \times 10^{-6} m$			
	a) 2000 <i>K</i>	b) 500 <i>K</i>	c) 250 <i>K</i>	d) None of these
337	•	,	1 K in 2 minutes. Find the t	•
337		_	K. Temperature of room is 2	_
	a) 84 s	b) 72 s	c) 66 s	d) 60 s
220	-			
330		ass 20 g at 0 °C is mixed w	illi 40 g oi water 10 °C, illiai	temperature of the mixture
	is	1.) 000	3 2000	D C CC0C
220	a) 5°C	b) 0°C	c) 20°C	d) 6.66°C
339			expansion is α) completely	
			of the liquid column does n	ot change. Choose the
	correct relation between	γ and α		
	Ao Io Io	GPLUS EDU	CATION	
	a) $\gamma = \alpha$	b) $\gamma = 2\alpha$	c) $\gamma = 3\alpha$	d) $\gamma = \frac{\alpha}{3}$
240	The coefficient of real ev	nancian of margury is 0.10	$\times 10^{-3}$ °C ⁻¹ . If the density of	3
340	g/cc, its density at 473 K		× 10 C . If the defisity (of intercury at 0°C is 13.0
	-	b) 13.65 g/cc	a) 12 E1 a/aa	d) 12 22 a /oc
241	a) 13.11 g/cc	, ,,	c) 13.51 g/cc	d) 13.22 g/cc
341	-	_	-	vo identical rods of different
		ermal conductivities of the		D 4 0 5
	a) 1 : 6.25	b) 6.25 : 1	c) $1:\sqrt{2.5}$	d) 1 : 2.5
342		-	igh a window, when inside	=
	-		will be conducted in throug	the window, when
	outside temperature −23	3°C and inside temperature	e is	
	a) 23°C	b) 230 <i>K</i>	c) 270 K	d) 296 <i>K</i>
343	. The rate of radiation of a	black body at 0°C is EJ/s.	The rate of radiation of this	black body at 273°C will be
	a) 16 <i>E</i>	b) 8 <i>E</i>	c) 4 E	d) <i>E</i>
344	. Calculate the amount of l	neat (in calories) required	to convert 5 g of ice at 0°C t	to steam at 100°C
	a) 3100 <i>cal</i>	b) 3200 <i>cal</i>	c) 3600 <i>cal</i>	d) 4200 <i>cal</i>

temperature of water

345. Of two masses of 5 kg each falling from height of 10 m, by which 2kg water is stirred. The rise in

a) 2.6°C	b) 1.2°C	c) 0.32°C	d) 0.12°C
346. The wavelength $\lambda_m =$	$5.5 imes 10^{-7}$ m when temp	erature of sun is 5500 K.	If the furnace has
	to 11×10^{-7} m, then temp		
a) 5000 K	b) 1750 K	c) 3750 K	d) 2750 K
347. Wien's constant is 2892	_		-
		and of λ_m if offi filooff is 14.	40 microns, what is the
surface temperature of) 400 W	D 200 K
a) 100 <i>K</i>	b) 300 <i>K</i>	c) 400 K	d) 200 <i>K</i>
348. In a water-fall the water		. If the entire K. E. of water	is converted into neat, the
rise in temperature of v			N 0 0000
a) 0.23°C	b) 0.46°C	c) 2.3°C	d) 0.023°C
349. The coefficient of the			-
cylindrical bar shown	in the figure, what will be	the temperature at the j	unction of copper and
steel?			
100°C	$0^{\rm o}{ m C}$		
100 €			
Copper	Steel		
Соррег	Steel		
10 -	/		
18 cm →	← 6 cm →		
a) 75°C	b) 67°C	c) 25°C	d) 33°C
350. The layers of atmosphe	re are heated through		
a) Convection	b) Conduction	c) Radiation	d) (b) and (c) both
351. The two opposite faces	of a cubical piece of iron (the	ermal conductivity = 0.2 Co	GS unit) are at 100°C and
	a surface is $4cm^2$, then the n		
a) 30 <i>g</i>	b) 300 g	c) 5 <i>g</i>	d) 50 <i>g</i>
352. A black body is at a tem	, ,	, ,	, ,
a) 300		c) $(300)^3$	d) (300) ⁴
353. A container contains ho			
falls to 60°C from 80°C,		I temperature land to so c	and in time 12 temperature
a) $T_1 = T_2$	b) $T_1 > T_2$	c) $T_1 < T_2$	d) None
354. The saturation vapour μ	·		d) None
	b) $750 mm$ of mercury		d) 712 mm of moreury
355. The correct value of 0°C	_	c) 760 mm of mercury	d) /12 mm of mercury
		-) 272 OF <i>V</i>	4) 272 C2 V
a) 273.15 <i>K</i>	b) 273.00 <i>K</i>	c) 273.05 <i>K</i>	d) 273.63 <i>K</i>
356. 540 g of ice at 0°C is mix	_		
a) 0°C	b) 40°C	c) 80°C	d) Less than 0°C
357. Two spheres made of sa	ame substance have diamete	rs in the ratio 1 : 2. Their t	hermal capacities are in the
ratio of			
a) 1 : 2	b) 1 : 8	c) 1:4	d) 2 : 1
358. If the temperature of a l	hot body is increased by 50%	$\%$ then the increase in the ${f q}$	uantity of emitted heat
radiation will be			
a) 125%	b) 200%	c) 300%	d) 400%
359. Hot water cools from	60°C to 50°C in the first 10	0 min and to 42°C in the	first 10 min and to 42°C in
the next 10 min. Then	the temperature of the su	ırroundings is	
a) 20°C	<u>-</u>	•	12 4 000
~, ~ ~ ~	b) 30°C	c) 15°C	d) 10°C
360 Heat canacity of a subst	b) 30°C	c) 15°C	d) 10°C
360. Heat capacity of a substa) Heat is given out	· ·	c) 15°C	d) 10°C

c) No change in temperature whether heat is taken in or given out

GPLUS EDUCATION

d) All of the above			
361. A black body radiates 20	_	temperature of the black b	oody is changed to 727°C
then its radiating power			
a) 120 <i>W</i>	b) 240 <i>W</i>	c) 320 W	d) 360 W
362. Mercury boils at 367°C	.However,mercury therm	nometers are made such	that they can measure
temperature are made	such that they can meası	are temperature upto 50	0°C.This is done by
a) Maintaining vacuum	above mercury column i	n the stem of the thermo	meter
b) Filling nitrogen gas a	it high pressure above th	e mercury column	
c) Filling oxygen gas at	high pressure above the	mercury column	
d) Filling nitrogen gas a	it low pressure above the	e mercury column	
363. Heat current is maximu	=	=	dimension)?
			1
a) Cu		b) Steel Cu	
<u> </u>	1	Steel	
c) Cu Steel		d)	
264 N	. 11		
364. No other thermometer is	as suitable as a platinum re	esistance thermometer to r	neasure temperature in the
entire range of	b) 1000C to 15000C	a)	d) 2000C to C000C
a) 0°C to 100°C	b) 100°C to 1500°C	c) -50°C to + 350°C	d) -200°C to 600°C
365. Three identical rods <i>A</i> ,	-	-	
			that if C and half of that
	nal conductivity of the sy	stem will be (KA) is the the	nermal conductivity of
$\operatorname{rod} A$)	131		4
a) $\frac{3}{2}KA$	b) 2 <i>KA</i>	c) 3 <i>KA</i>	d) $\frac{1}{3}$ KA
_	atia ahanga Ita anagifia has	at in the process is	3
366. A gas undergoes an adiab a) Zero		c) ∞	d) None of these
367. The temperature, at w	b) 1 high Contigrade and Fahr		
		c) -30°	d) 30°
a) -40°	b) 40°		•
368. In the following figure, tw	vo insulating sneets with th	ermai resistances <i>R</i> and 3 <i>i</i>	as snown in figure. The
temperature θ is			
↑ ^Q 20°C			
$3R$ θ			
R 100°C			
1 a			
a) 20°C	b) 60°C	c) 75°C	d) 80°C
369. On Centigrade scale the	•	•	•
Fahrenheit scale is	· · · · · · · · · · · · · · · · · · ·	,	,
a) 50°	b) 40°	c) 30°	d) 54°
370. If wavelengths of maximu		•	•
	ratio of their temperature is		
a) 1/100	b) 1/200	c) 100	d) 200
371. The absolute zero temper		•	· y =
a) $-273^{\circ}F$	b) -32° <i>F</i>	c) -460°F	d) -132°F
372. Solar radiation emitted	=	•	=

K. Maximum intensity is emitted at wavelength of 4800Å. If the sun was to cool down from 6000

K to 3000 K, then the peak intensity of emitted radiation would occur at a wavelength

WEB: WWW.GPLUSEDUCATION.ORG PHONE NO: 8583042324 Page | 33

	a) 4800Å	b) 9600Å	c) 2400Å	d) 19200Å
373.	When vapour condenses	into liquid		
	a) It absorbs heat		b) It liberates heat	
	c) Its temperature increa	ases	d) Its temperature decrea	ses
374.	According to Newton's	law of cooling, the rate o	f cooling is proportional	to $(\Delta\theta)^n$, where $\Delta\theta$ is the
	temperature difference	es between the body and	the surroundings and n is	s equal to
	a) 3	b) 2	c) 1	d)
375.	A steel meter scale is to l	oe ruled so that millimeter in	ntervals are accurate within	n about $5 \times 10^{-5} mm$ at a
		e maximum temperature vai		
	linear expansion of steel	_	O	0 \
	a) 2°C	b) 5°C	c) 7°C	d) 10°C
376.	An iron bar of length l ar	nd having a cross-section A i	s heated from 0 to 100°C. It	f this bar is so held that it is
	not permitted to expand	or bend, the force that is de	veloped, is	
	a) Inversely proportiona	ıl to the cross-sectional area	of the bar	
	b) Independent of the lea	ngth of the bar		
	c) Inversely proportiona	ll to the length of the bar		
	d) Directly proportional	to the length of the bar		
377.	•	t law express relation betwe	en	
	a) Frequency and tempe			
	b) Temperature and amp			
	_	ting power of black body		
		nding to maximum energy a		
378.	= =	y stretched spring are made		ave the same mass. They
	-	nelt, the latent heat required		
	a) Are the same for both	2		
	b) Is greater for the ball	e enio	A 2017 A 5 1	
	c) Is greater for the sprin		ATION	
270		ay not be the same depending		1
3/9.	-	same material have radii i		=
	-	at is the ration of heat rad		
	a) 1:4	b) 4:1	c) 3:4	d) 4:3
380.		nd equal mass of ice at 0°		
	steady state will be (la	tent heat of steam=540ca	alg ⁻¹ , latent heat of ice=8	$30 \operatorname{calg}^{-1}$)
	a) 50°C	b) 100°C	c) 67°C	d) 33°C
381.	A litre of alcohol weighs			
	a) Less in winter than in		b) Less in summer than in	n winter
	c) Same both in summer		d) None of the above	
382.		0°C. Deep down the mine, w	-	
	a) 100°C	b) > 100°C	c) < 100°C	d) Will not boil at all
383.	The surface temperature) = 000 W	D 0000 **
201	a) 2900 <i>K</i>	b) 4000 K	c) 5800 K	d) 9000 K
384.	=	cm and 2 cm are cooling.	=	127°C and 527°C
	= -	ratio of energy radiated by		
	a) 0.06	b) 0.5	c) 1	d) 2
385.	Which curve shows the	e rise of temperature with	the amount of heat supp	olied, for a piece of ice?

a) A

b) B

c) C

- d) D
- 386. There is a black spot on a body. If the body is heated and carried in dark room then it glows more. This can be explained on the basis of
 - a) Newton's law of cooling

b) Wien's law

c) Kirchhoff's law

- d) Stefan's
- 387. The apparent coefficient of expansion of a liquid when heated in a copper vessel is C and when heated in a silver vessel is S. If A is the linear coefficient of expansion of copper, then the linear coefficient of expansion of silver is
 - a) $\frac{C+S-3A}{3}$
- b) $\frac{C+3A-S}{3}$ c) $\frac{S+3A-C}{3}$ d) $\frac{C+S+3A}{3}$
- 388. The energy supply being cut-off, an electric heater element cools down to the temperature of its surroundings, but it will not cool further because
 - a) Supply is cut off

b) It is made of metal

c) Surroundings are radiating

- d) Element & surroundings have same temp.
- 389. Three rods of material *X* and three rods of material *Y* are connected as shown in figure. All are identical in length and cross sectional area. If end A is maintained at 60° C, end E at 10° C, thermal conductivity of X is $0.92 \text{ cals}^{-1} \text{ cm}^{-1} \,^{\circ}\text{C}^{-1}$ and that Y is $0.46 \text{ cals}^{-1} \,^{\circ}\text{C}^{-1}$, then find the temperature of junctions B, C, D.

- a) 20°C, 30°C, 20°C
- b) 30°C, 20°C, 20°C
- c) 20°C, 20°C, 30°C
- d) 20°C, 20°C, 20°C
- 390. Radius of a conductor increases uniformly from left end to right end as shown in fig

Material of the conductor is isotropic and its curved surface is thermally insulated from surrounding. Its ends are maintained at temperatures T_1 and $T_2(T_1 > T_2)$: If, in steady state, heat flow rate is equal to H, then which of the following graphs is correct

391. One end of a metal rod of length 1.0 m and a If the other end of the rod is maintained at 0 per minute is (coefficient of thermal conduct a) 3×10^3 J b) 6×10^3 J	0° C, the quantity of heat transtivity of material of rod =1	nsmitted through the rod 00W/m-K)
392. For an opaque body coefficient of transmiss		,
a) Zero b) 1	c) 0,5	d) ∞
	,	,
393. There is formation of layer of snow $x cm$ thick of fracting point. The thickness of layer in groups	•	•
freezing point). The thickness of layer increases $(x + y)(x - y) dt$		
a) $\frac{(x+y)(x-y)\rho L}{2k\theta}$ b) $\frac{(x-y)\rho L}{2k\theta}$	c) $\frac{(x+y)(x-y)\rho L}{L\rho}$	d) $\frac{(x-y)\rho L\kappa}{20}$
394. A vessel contains 110 g of water. The heat c	100	=0
initial temperature of water in vessel in 10°	•	o c is poured in the vessel,
the final temperature neglecting radiation le		
a) 70°C b) 80°C	c) 60°C	d) 50°C
395. A cane is taken out from a refrigerator at 0° time taken to heat from 0° C to 5° C and t_2 is		-
a) $t_1 > t_2$ b) $t_1 < t_2$	c) $t_1 = t_2$	d) There is no relation
396. The tungsten filament of an electric lamp has a significant filament is ε and σ is Stefan's constant, the stead	-	=
a) $T = \left(\frac{P}{A\varepsilon\sigma}\right)^4$ b) $T = \left(\frac{P}{A\varepsilon\sigma}\right)$	c) $T = \left(\frac{A\varepsilon\sigma}{P}\right)^{\frac{1}{4}}$	d) $T = \left(\frac{P}{A\varepsilon\sigma}\right)^{\frac{1}{4}}$
397. A piece of ice (heat capacity=2100JKg ⁻¹ °C	$^{-1}$ and latent heat=3.36 \times 1	10^5 lkg^{-1}) of mass m gram
is at -5°C at atmospheric pressure. It is give		
when the ice-water mixture is in equilibrium		
		nas meiteu. Assuming there
is no other heat exchange in the process, the		12.0.5
a) 8 b) 6 398. When red glass is heated in dark room it will se	c) 4	d) 8 . 5
	en	
a) Green b) Purple	c) Black	d) Yellow
399. At some temperature T , a bronze pin is a little la		a steel block. The change in
temperature required for an exact fit is minimu		
a) Only the block is heated	b) Both block and pin a	_
c) Both block and pin are cooled together	d) Only the pin is cooled	
400. A metal ball immersed in alcohol weighs W_1 at 0		
the metal is less than that of alcohol. Assuming	that the density of metal is lar	ge compared to that of
alcohol, it can be shown that		
a) $W_1 > W_2$ b) $W_1 = W_2$	c) $W_1 < W_2$	d) $W_2 = (W_1/2)$
401. It is known that wax contracts on solidification.	If molten wax is taken in a lar	rge vessel and it is allowed to
cool slowly, then		
 a) It will start solidifying from the top to down 	ward	
b) It will start solidifying from the bottom to up	ward	
c) It will start solidifying from the middle, upwa	ard and downward at equal ra	tes
d) The whole mass will solidify simultaneously		
402. A faulty thermometer has its fixed points marke	ed 5 and 95. When this thermo	ometer reads 68, the correct
temperature in Celsius is		
a) 68°C b) 70°C	c) 66°C	d) 72°C
403. Newton's law of cooling is used in laboratory fo	r the determination of the	
a) Specific heat of the gases	b) The latent heat of gas	ses

c) Specific heat of liquids

- d) Latent heat of liquids
- 404. A pendulum clock keeps correct time at 0°C. Its mean coefficient of linear expansions is α /°C, then the loss in seconds per day by the clock if the temperature rises by $t^{\circ}C$ is
- b) $\frac{1}{2}\alpha t \times 86400$
- c) $\frac{\frac{1}{2}\alpha t \times 86400}{\left(1 \frac{\alpha t}{2}\right)^2}$ d) $\frac{\frac{1}{2}\alpha t \times 86400}{1 + \frac{\alpha t}{2}}$
- 405. 1 g of a steam at 100°C melts how much ice at 0°C? (Latent heat of ice = $80 \ cal/gm$ and latent heat of $steam = 540 \, cal/gm$)
 - a) 1 *gm*
- b) 2 gm
- c) 4 gm

- d) 8 gm
- 406. 2 kg of ice at -20°C is mixed with 5 kg of water at 20°C in an insulating vessel having a negligible heat capacity. Calculate the final mass of water remaining in the container. It is given that the specific heats of water and ice are 1 kcal/kg/°C and 0.5 kcal/kg/°C while the latent heat of fusion of ice is 80 kcal kg⁻¹
 - a) 7 kg

b) 6 kg

c) 4 kg

- d) 2 kg
- 407. Two solid spheres of the same material have the same radius but one is hollow while the other is solid. Both spheres are heated to same temperature. Then
 - a) The solid sphere expands more
 - b) The hollow sphere expands more
 - c) Expansion is same for both
 - d) Nothing can be said about their relative expansion if their masses are not given
- 408. The temperature at which a black body of unit area loses its energy at the rate of 1 *joule/second* is
 - a) -65°C
- b) 65°C
- c) 65 K

- d) None of these
- 409. A calorimeter of mass 0.2 kg and specific heat 900 I/kg-K. Containing 0.5 kg of a liquid of specific heat 2400 *J/kg-K*. Its temperature falls from 60°C to 55°C in one minute. The rate of cooling is

- b) 15 *J/s*
- c) 100 *I/s*
- 410. A piece of metal weighs 45 g in air and 25 g in a liquid of density $1.5 \times 10^3 kg m^{-3}$ kept at 30°C. When the temperature of the liquid is raised to 40° C, the metal piece is weighs 27 g. The density of liquid at 40° C, is $1.25 \times 10^3 kg - m^{-3}$. The coefficient of linear expansion of metal is
 - a) 1.3×10^{-3} /°C
- b) 5.2×10^{-3} /°C
- c) 2.6×10^{-3} /°C
- d) 0.26×10^{-3} /°C
- 411. The following figure represents the temperature *versus* time plot for a given amount of a substance when heat energy is supplied to it at a fixed rate and at a constant pressure.

Which parts of the above plot represents a phase change?

a) a to b and e to f

b) *b* to *c* and *c* to *d*

c) d to e and e to f

- d) b to c and d to e
- 412. Standardisation of thermometers is obtained with
 - a) Jolly's thermometer

b) Platinum resistance thermometer

c) Thermocouple thermometer

- d) Gas thermometer
- 413. If a black body is heated at a high temperature, it seems to be
 - a) Blue

- b) White
- c) Red

- d) Black
- 414. The lengths and radii of two rods made of same material are in the ratios 1:2 and 2:3 respectively. If the temperature difference between the ends for the two rods be the same, then in the steady state, the amount of heat flowing per second through them will be in the ratio

a) 1 :	. 3	b) 4:3	c) 8:9	a) 3 : 2
-	e point of water is			
-	′3.16° <i>F</i>	b) 273.16 <i>K</i>	c) 273.16°C	d) 273.16 <i>R</i>
		_	sulating surface converting	whole of its kinetic energy
_		will melt $(g = 10m/s^2)$	4	
a) $\frac{1}{33}$	-	b) $\frac{1}{8}$	c) $\frac{1}{33} \times 10^{-4}$	d) All of it will melt
		O	33 ojected to 40°C. If coefficion	ont of linear expansion of
		10^{-6} °C $^{-1}$. How much will	· Francisco de la companya de la co	ent of finear expansion of
-			•	4) 20 min day-1
-).3 s day ⁻¹	b) 20.6 s day ⁻¹	c) 5 s day ⁻¹	d) 20min day^{-1}
	th of the following st	etter radiators than smooth	curfaca	
		or like surfaces are very goo		
-		ter absorbers than white o		
-		ter radiators than white		
,			nermal conductivity, then th	ne thermal resistance of the
	k is given by		•	
a) <i>K</i>	l A	b) 1/ <i>K l A</i>	c) $l + KA$	d) <i>l / KA</i>
420. Whic	h of the following is	s the example of ideal black	body	
a) Ka	-	b) Black board	c) A pin hole in a box	-
			igher than the room temper	
a roo	m free from air curi	rents. Which of the followir	ng curves correctly represer	nts the rate of cooling
٥	\uparrow	<u>e</u>	ღ ↑	ଥ୍ /
ratu		eratu	ar atr	eratu
a) anti-	\	b) emperature	c) emperature	d) lemberature
F	1	- F		F
400 ml l	Time	Time	Time	Time
	_	_	same material. The diamete	
		flow of heat through them	temperature difference bet	tween their ends is the
a) 1:		b) 2:1	c) 1:4	d) 1:8
-		,	rent liquids <i>A, B</i> and <i>C</i> are	
			re mixed is 16°C and when	
=	-	e when A and Care mixed		i Dana Care mixea is
	3.2°C	b) 22°C	c) 20.2°C	d) 24.2°C
-		•	100°C. If the coefficient of	•
	_	0×10^{-6} °C ⁻¹ , the increase		of fifted thermal
				d) 2.0 am
=	5 cm	b) 1.0 cm	c) 1.5 cm	d) 2.0 cm
			. Calculate the temperature	of the sun assuming it to be
	ck body ($\sigma = 5.7 \times 10^{3} K$	b) $8.5 \times 10^3 K$	c) $3.5 \times 10^8 K$	d) $5.3 \times 10^8 K$
-		•	ially, which of the following	
you	icreasing the temper	rature of a substance grade	ially, which of the following	colours will be floticed by
a) W	hite	b) Yellow	c) Green	d) Red
-		•	d that of the specific heats i	•
	een heat capacities		r	
a) 1 :	=	b) 2 : 1	c) 1:2	d) 1:3
-				

- 428. Two spheres made of same material have radii in the ratio 1:2. Both are at same temperature. Ratio of heat radiation energy emitted per second by them is
 - a) 1:2

b) 1:8

c) 1:4

d) 1:16

- 429. Can we boil water inside the earth satellite by convection
 - a) Yes

b) No

c) Nothing can be said

- d) In complete information is given
- 430. Two rods, one of aluminium and the other made of steel, having initial length l_1 and l_2 are connected together to form a single rod of length l_1+l_2 . The coefficients of linear expansion for aluminium and steel are α_a and α_s respectively. If the length of each rod increases by the same amount when their temperature are raised by t° C, then find the ratio $\frac{l_1}{(l_1+l_2)}$.
 - a) $\frac{\alpha_s}{\alpha_a}$

- c) $\frac{\alpha_s}{(\alpha_a + \alpha_s)}$
- 431. Density of substance at 0°C is 10 g/cc and at 100°C, its density is 9.7 g/cc. The coefficient of linear expansion of the substance is
 - a) 1.03×10^{-4}
- b) 3×10^{-4}
- c) 19.7×10^{-3}
- d) 10^{-3}
- 432. The temperature of a substance increases by 27°C. On the Kelvin scale this increase is equal to
 - a) 300 K
- b) 2.46 K
- c) 27 K

- 433. An electric kettle takes 4A current at 220 V. How much time will it take to boil 1 kg of water from temperature 20°C? The temperature of boiling water is 100°C
 - a) 12.6 min
- b) 4.2 min
- c) 6.3 min
- d) 8.4 min
- 434. Five rods of same dimensions are arranged as shown in figure. They have thermal conductivities K_1 , K_2 , K_3 , K_4 and K_5 . When points A and B are maintained at different temperature, no heat would flow through central rod, if

- a) $K_1K_4 = K_2K_3$

- b) $K_1 = K_4$ and $K_2 = K_3$
- d) $K_1K_2 = K_3K_4$.
- 435. A black body at a temperature of 227°C radiates heat at the rate of 5 cal cm⁻²s⁻¹. At a temperature of 727°C the rate of heat radiated per unit area in cal $cm^{-2}s^{-1}$ is
 - a) 400

b) 80

c) 40

d) 15

- 436. Calorimeters are made of which of the following

- b) Metal
- c) Wood
- d) Either (a) or (c)
- 437. A wall has two layers A and B made of different materials. The thickness of both the layers is the same. The thermal conductivity of A and B are K_A and K_B such that $K_A = 3K_B$. The temperature across the wall is 20°C. In thermal equilibrium
 - a) The temperature difference across $A = 15^{\circ}$ C
 - b) The temperature difference across $A = 5^{\circ}$ C
 - c) The temperature difference across *A* is 10°C
 - d) The rate of transfer of heat through A is more than that through B
- 438. A bubble of 8 mole of helium is submerged at a certain depth in water. The temperature of water increases by 30°C. How much that is added approximately to helium during expansion
 - a) 4000 *I*
- b) 3000 I
- c) 3500 I
- d) 5000 I

439		of temperatures of sun ar	_	ths of their maximum
	emission radiations ra	ites are 140 Å and 4200 Å	respectively?	
	a) 1:30	b) 30:1	c) 42:14	d) 14:42
440	The temperature of two	bodies A and B are 727°C a	nd 127°C. The ratio of rate	of emission of radiations
	will be			
	a) 727/127	b) 625/16	c) 1000/400	d) 100/16
441	. Which of the following s	tatements is correct		
	a) A good absorber is a b	oad emitter		
	b) Every body absorbs a	nd emits radiations at ever	y temperature	
		ons emitted from a black bo	•	
	d) The law showing the black body is Plank's	-	th the wavelength of maxin	num emission from an ideal
442	. A metal plate 4 mm thicl	k has a temperature differe	nce of 32°C between its face	es. It transmits 200 <i>kcal/h</i>
	through an area of $5cm^2$	Thermal conductivity of the	ne material is	
	a) 58.33 <i>W/m-</i> °C	b) 33.58 <i>W/m</i> -°C	c) $5 \times 10^{-4} W/m$ -°C	d) None of these
443	Hot water cools from 6	60° C to 50° C in the first 1°	0 min and to 42°C in the	next 10 min. The
	temperature of the sur	rroundings is		
	a) 10°C	b) 5°C	c) 15°C	d) 20°C
444	A cylindrical rod with or	ne end in a steam chamber a	and the other end in ice res	sults in melting of 0.1 g of ice
	=			e radius of the first and if the
	thermal conductivity of	the material of the second i	rod is $1/4$ that of the first, t	he rate at which ice melts in
	gs^{-1} will be		>	
	a) 3.2	b) 1.6	c) 0.2	d) 0.1
445	Surface of the lake is at 2	2°C. Find the temperature o	f the bottom of the lake	
	a) 2°C	b) 3°C	c) 4°C	d) 1°C
446	. If the temperature of the	e sun (black body) is double	ed, the rate of energy receiv	ed on earth will be
	increased by a factor of	CTPLUS EDU(CATION	
	a) 2	b) 4	c) 8	d) 16
447		r on heating increases by 29		
	a) 0.5%	b) 2%	c) 1%	d) 4%
448		ximum energy, released o		
	Given that the Wien's	constant is 2.93 $ imes$ 10 ⁻³ m	n – K, the maximum temp	perature attained must be
	of the order of			
	a) 10^{-7} K	b) 10 ⁷ K	c) 10 ⁻³ K	d) $5.86 \times 10^7 \text{ K}$
449	. Two identical rods of co	pper and iron are coated wi	th wax uniformly. When or	ne end of each is kept at
	temperature of boiling v	vater, the length upto which	n wax melts are 8.4 $\it cm$ and $\it c$	4.2 <i>cm</i> respectively. If
	thermal conductivity of	copper is 0.92, then therma	l conductivity of iron is	
	a) 0.23	b) 0.46	c) 0.115	d) 0.69
450	. In which case the therm	al conductivity increases fro	om left to right	
	a) Al , Cu , Ag	b) Ag , Cu , Al	c) Cu, Ag, Al	d) Al, Ag, Cu
451		_	x = 0 to $x = l$. If its therm	al resistance per unit length
	is uniform, which of the	following graphs is correct		
	a) ₇	b) ₇ ↑	c) _T 1	d) ₇
				\

452			adiating energy at the rate o	
			of energy will become appr	
	a) $2Q \ kW m^{-2}$	b) $4Q \ kW m^{-2}$	c) $6Q \ kW m^{-2}$	d) $8Q \ kW m^{-2}$
453			nt of thermal expansions	
	moduli Y_1 and Y_2 respec	tively are fixed between	two rigid walls. The rods	s are heated, such that
	they undergo the same	increase in temperature	. There is no bending of r	ods. If $\alpha_1/\alpha_2=2/3$ and
	stresses developed in th	ne two rods are equal, th	en $\frac{Y_1}{Y_2}$ is	
	a) 3/2	b) 1	c) 2/3	d) 1/2
454	. In a closed room, which m		, ,	<i>y</i> ,
	a) Conduction	b) Convection	c) Radiation	d) All of these
455	,		disc from the hole can be lo	
	a) First heated then coole		b) First cooled then heate	•
	c) Is heated	_	d) Is cooled	_
456	-	y is supplied to a block of	ice weighing $10 g$. It is four	nd that
	a) Half of the block melts	9)FF		
	b) The entire block melts	and the water attains a ter	nperature of 4°C	
	c) The entire block just m		F	
	d) The block remains uncl			
457	. Melting point of ice	<i>G</i>		
	a) Increases with increasi	ng pressure	b) Decreases with increas	sing pressure
	c) Is independent of press		d) Is proportional to pres	= =
458			rce is collected for 1 min	
			ound to increase from 20	
	•	76to Luid?	les and the experiment is	
				repeated with the same
		C, the temperature of wa		1) 200C
459	a) 21°C . According to Wien's law	JPLUS EDU(c) 24·C	d) 28°C
	a) $\lambda_m T = \text{constant}$	b) $\frac{\lambda_m}{T}$ = constant	c) $\frac{T}{\lambda_m}$ = constant	d) $T + \lambda_m = \text{constant}$
460	. Two black metallic sphere	es of radius $4m$, at $2000 K$	and $1m$ at $4000K$ will have	e ratio of energy radiation
	as			
	a) 1:1	b) 4:1	c) 1:4	d) 2:1
461	Three objects coloured	black, gray and white ca	n with stand hostile cond	litions at 2800°C. These
	objects are thrown into	furnace where each of t	hem attains a temperatur	e of 2000°C. Which
	object will glow brighte	st?		
	a) The white object		b) The black object	
	c) All glow with equal b	rightness	d) Gray object	
462		O .	s heat at the rate of 20 cal	$m^{-2}s^{-1}$ When its
	temperature rises to 72			in 5 ivinentes
	a) $40 \text{ cal m}^{-2} \text{s}^{-1}$	b) $160 \text{ cal m}^{-2} \text{s}^{-1}$	c) $320 \text{ cal m}^{-2} \text{s}^{-1}$	d) $640 \text{ cal m}^{-2} \text{s}^{-1}$
460	•	•		
463			erent material is 5:4. The tw	vo rous of same area of
		ermal resistance will have	-	D. F. A
101	a) 4:5	b) 9:1	c) 1:9	d) 5 : 4
464	. The coefficient of therm	ial conductivity of a rod	-	
	a) Area		b) Length	
	c) Material of rod		d) Temperature differen	nce
			$firon = 11 \times 10^{-6} / ^{\circ}C)$	

466. A clock with an iron per		c) 11×10^{-3} cm shorter	d) $11 \times 10^{-5} cm$ longer
	ndulum keeps correct time at	: 15°C. What will be the err	or, in second per day, if the
room temperature is 20)°C?		
(The coefficient of linea	r expansion of iron is 0.000	012°C ⁻¹ .)	
a) 2.6 s	b) 6.2 s	c) 1.3 s	d) 3.1 s
467. On the Celsius scale the	absolute zero of temperatur	e is at	
a) 0°C	b) −32°C	c) 100°C	d) -273.15°C
468. A black body is heated	d from 27°C to 927°C. The	ratio of radiation emitted	d will be
a) 1:4	b) 1:8	c) 1:16	d) 1:256
469. Mud houses are cooler	in summer and warmer in wi	inter because	
a) Mud is superconduct	cor of heat	b) Mud is good conductor	of heat
c) Mud is bad conducto	r of heat	d) None of these	
470. Mode of transmission o	f heat, in which heat is carrie	d by the moving particles,	is
a) Radiation	b) Conduction	c) Convection	d) Wave motion
471. Which of the followin	g is more close to a black l	ody?	
a) Black board paint	b) Green leaves	c) Black holes	d) Red roses
472. A black body has maxin	num wavelength λ_m at tempe	erature 2000 K. Its corresp	onding wavelength at
temperature 3000 K wi		-	
a) $\frac{3}{2}\lambda_m$	b) $\frac{2}{3}\lambda_m$	c) $\frac{4}{9}\lambda_m$	d) $\frac{9}{4}\lambda_m$
L	3	2	$\frac{1}{4} \lambda_m$
473. The Fahrenheit and Ke		o o	
a) -40	b) 313	c) 574.25	d) 732.75
474. Four rods of silver, cop		me shape. They are heated	together after wrapping a
paper on it, the paper w			
a) Silver	b) Copper	c) Brass	d) Wood
475. The wavelength of max		emitted by a star is 289.8 n	<i>m</i> . The radiation intensity
	s constant 5.67 $\times 10^{-8} Wm^{-2}$		
a) $5.67 \times 10^8 W/m^2$	b) $5.67 \times 10^{12} W/m^2$	c) $10.67 \times 10^7 W/m^2$	d) $10.67 \times 10^{14} W/m^2$
a) $5.67 \times 10^8 W/m^2$ 476. Which of the following	b) $5.67 imes 10^{12} W/m^2$ graphs correctly represents t	c) $10.67 \times 10^7 W/m^2$ The relation between $\ln E$ as	d) $10.67 \times 10^{14} W/m^2$ nd ln T where E is the
a) $5.67 \times 10^8 W/m^2$ 476. Which of the following amount of radiation em	b) $5.67 \times 10^{12} W/m^2$ graphs correctly represents to itted per unit time from unit	c) $10.67 \times 10^7 W/m^2$ the relation between $\ln E$ area of a body and T is the	d) $10.67 \times 10^{14} W/m^2$ and $\ln T$ where E is the absolute temperature
a) $5.67 \times 10^8 W/m^2$ 476. Which of the following	b) $5.67 imes 10^{12} W/m^2$ graphs correctly represents t	c) $10.67 \times 10^7 W/m^2$ The relation between $\ln E$ as	d) $10.67 \times 10^{14} W/m^2$ nd ln T where E is the
a) $5.67 \times 10^8 W/m^2$ 476. Which of the following amount of radiation em	b) $5.67 \times 10^{12} W/m^2$ graphs correctly represents the itted per unit time from unit $\ln E$	c) $10.67 \times 10^7 W/m^2$ the relation between $\ln E$ at area of a body and T is the	d) $10.67 \times 10^{14} W/m^2$ and $\ln T$ where E is the absolute temperature
a) $5.67 \times 10^8 W/m^2$ 476. Which of the following amount of radiation em	b) $5.67 \times 10^{12} W/m^2$ graphs correctly represents to itted per unit time from unit	c) $10.67 \times 10^7 W/m^2$ the relation between $\ln E$ area of a body and T is the	d) $10.67 \times 10^{14} W/m^2$ and $\ln T$ where E is the absolute temperature d)
a) $5.67 \times 10^8 W/m^2$ 476. Which of the following amount of radiation em	b) $5.67 \times 10^{12} W/m^2$ graphs correctly represents the litted per unit time from unit b)	c) $10.67 \times 10^7 W/m^2$ the relation between $\ln E$ at area of a body and T is the c)	d) $10.67 \times 10^{14} W/m^2$ and $\ln T$ where E is the absolute temperature
a) $5.67 \times 10^8 W/m^2$ 476. Which of the following amount of radiation em	b) $5.67 \times 10^{12} W/m^2$ graphs correctly represents the distribution of the per unit time from unit b)	c) $10.67 \times 10^7 W/m^2$ the relation between $\ln E$ at area of a body and T is the c)	d) $10.67 \times 10^{14} W/m^2$ and $\ln T$ where E is the absolute temperature d) $\frac{\ln E}{0} = \ln T$
a) 5.67 × 10 ⁸ W/m ² 476. Which of the following amount of radiation em ln E a) 477. A wire 3 m in length a	b) $5.67 \times 10^{12} W/m^2$ graphs correctly represents to itted per unit time from unit b) b) $I = I = I = I$ and 1 mm in diameter at 30	c) $10.67 \times 10^7 W/m^2$ the relation between $\ln E$ at area of a body and T is the c) $\ln E$ c) $\ln T$ O°C is kept in a low temperature of the control of	d) $10.67 \times 10^{14} W/m^2$ and $\ln T$ where E is the absolute temperature d) $\ln E$ 0 erature at -170° C and is
a) 5.67 × 10 ⁸ W/m ² 476. Which of the following amount of radiation em a) In E a) 477. A wire 3 m in length a stretched by hanging	b) $5.67 \times 10^{12} W/m^2$ graphs correctly represents the distribution of the per unit time from unit by the per unit time from unit by the per unit time from unit by the per unit time from unit and 1 mm in diameter at 30 a weight of 10 kg at one end	c) $10.67 \times 10^7 W/m^2$ the relation between $\ln E$ at area of a body and T is the c) $\ln E$ c) $\ln T$ O°C is kept in a low temperature. The change in length t	d) $10.67 \times 10^{14} W/m^2$ and $\ln T$ where E is the absolute temperature d) $\ln E$ 0 erature at -170° C and is
a) $5.67 \times 10^8 W/m^2$ 476. Which of the following amount of radiation em a) An in E a) 477. A wire 3 m in length a stretched by hanging $(Y = 2 \times 10^{11} \text{ Nm}^{-2},$	b) $5.67 \times 10^{12} W/m^2$ graphs correctly represents the itted per unit time from unit by the following state of 10 kg at one engel 10 ms^{-2} and 10 kg at one engel 10 kg at one engel 10 kg at $10 \text$	c) $10.67 \times 10^7 W/m^2$ the relation between $\ln E$ at area of a body and T is the charge in length of $\ln E$. C) $\ln E$ C) $\ln T$ O°C is kept in a low temperature of $\ln E$.	d) $10.67 \times 10^{14} W/m^2$ and $\ln T$ where E is the absolute temperature d)
a) 5.67 × 10 ⁸ W/m ² 476. Which of the following amount of radiation em a) An in E a) 477. A wire 3 m in length a stretched by hanging (Y = 2 × 10 ¹¹ Nm ⁻² , a) 5.2 mm	b) $5.67 \times 10^{12} W/m^2$ graphs correctly represents to itted per unit time from unit b) b) In F and 1 mm in diameter at 30 a weight of 10 kg at one engeloms and $\alpha = 1.2 \times 10^{12} M/m^2$ b) 2.5 mm	c) $10.67 \times 10^7 W/m^2$ the relation between $\ln E$ at area of a body and T is the change in length of $10^{-5} ^{\circ}\text{C}^{-1}$) c) 52mm	d) $10.67 \times 10^{14} W/m^2$ and $\ln T$ where E is the absolute temperature d) $\ln E$ $\ln T$ erature at -170° C and is of the wise is d) 25 mm
a) 5.67 × 10 ⁸ W/m ² 476. Which of the following amount of radiation em a) An in E a) 477. A wire 3 m in length a stretched by hanging (Y = 2 × 10 ¹¹ Nm ⁻² , a) 5.2 mm 478. In which mode of trans	b) $5.67 \times 10^{12} W/m^2$ graphs correctly represents to itted per unit time from unit b) b) In F and 1 mm in diameter at 30 a weight of 10 kg at one engeloms and $\alpha = 1.2 \times 10^{12} M/m^2$ b) 2.5 mm	c) $10.67 \times 10^7 W/m^2$ the relation between $\ln E$ at area of a body and T is the condition of the condit	d) $10.67 \times 10^{14} W/m^2$ and $\ln T$ where E is the absolute temperature d)
a) 5.67 × 10 ⁸ W/m ² 476. Which of the following amount of radiation employed and the following amount of radiation employed and the following amount of radiation employed and the following amount of radiation and the following amount of radiation amount of the following amount of radiation amount of the following amount of radiation amount of radiation amount of radiation amount of radiation employed amount of radiation	b) $5.67 \times 10^{12} W/m^2$ graphs correctly represents to itted per unit time from unit to the following state of 10 kg at one engent of 10 kg at one engen of 10 kg at	c) $10.67 \times 10^7 W/m^2$ the relation between $\ln E$ at area of a body and T is the convergence of the conv	d) $10.67 \times 10^{14} W/m^2$ and $\ln T$ where E is the absolute temperature d)
a) 5.67 × 10 ⁸ W/m ² 476. Which of the following amount of radiation employed and the following amount of radiation employed and the following amount of radiation employed and following (Y = 2 × 10 ¹¹ Nm ⁻² , a) 5.2 mm 478. In which mode of transport and the following amount of radiation c) Natural convection	b) $5.67 \times 10^{12} W/m^2$ graphs correctly represents to itted per unit time from unit by the following states as a weight of 10 kg at one engent of 10 kg at one engen of 10 kg at one engen of 10 kg at one engen of 10 kg at one	c) $10.67 \times 10^7 W/m^2$ the relation between $\ln E$ at area of a body and T is the $\ln E$ c) C) $\ln E$ C) $\ln T$ O°C is kept in a low tempered. The change in length $\ln E$ C) C) 52 mm travel along straight line b) Forced convection d) Thermal conduction	d) $10.67 \times 10^{14} W/m^2$ and $\ln T$ where E is the absolute temperature d) $\ln E$ erature at -170° C and is of the wise is d) 25 mm with the speed of light?
a) 5.67 × 10 ⁸ W/m ² 476. Which of the following amount of radiation employed and the following amount of radiation employed and the following amount of radiation employed and following (Y = 2 × 10 ¹¹ Nm ⁻² , a) 5.2 mm 478. In which mode of transport and the following amount of radiation amount of radiation employed employe	b) $5.67 \times 10^{12} W/m^2$ graphs correctly represents to itted per unit time from unit by the following states of 10 kg at one engeloms a weight of 10 kg at one engeloms and 10 kg at one engeloms. The following states of 10 kg at one engeloms. The following states of 10 kg at one engeloms. The following states of 10 kg at one engeloms. The following states of 10 kg at one engeloms. The following states of 10 kg at one engeloms. The following states of 10 kg at one engelom states of 10 kg and 10 kg at one engelom states of $10 k$	c) $10.67 \times 10^7 W/m^2$ the relation between $\ln E$ at area of a body and T is the $\ln E$ c) O°C is kept in a low temperature. The change in length 10^{-5} °C ⁻¹) c) 52 mm travel along straight line b) Forced convection d) Thermal conduction y should be small. If P is a respective E is a respective E and E is a respective E .	d) $10.67 \times 10^{14} W/m^2$ and $\ln T$ where E is the absolute temperature d)
a) 5.67 × 10 ⁸ W/m ² 476. Which of the following amount of radiation employed and the following amount of radiation employed and the following amount of radiation employed and following and following amount of radiation convection are sistance thermoments.	b) $5.67 \times 10^{12} W/m^2$ graphs correctly represents to itted per unit time from unit by $\ln F$ b) $\ln T$ and 1 mm in diameter at 30 a weight of 10 kg at one engenomes and $\alpha = 1.2 \times 1.2$	c) $10.67 \times 10^7 W/m^2$ the relation between $\ln E$ at area of a body and T is the local section of the local section $\ln E$ of	d) $10.67 \times 10^{14} W/m^2$ and $\ln T$ where E is the absolute temperature d)
a) 5.67 × 10 ⁸ W/m ² 476. Which of the following amount of radiation employed and the following amount of radiation employed and the following amount of radiation employed and following (Y = 2 × 10 ¹¹ Nm ⁻² , a) 5.2 mm 478. In which mode of transport and the following a resistance thermome a resistance thermome and P is best, R worst	b) $5.67 \times 10^{12} W/m^2$ graphs correctly represents the itted per unit time from unit to the following period of 10 kg at one engent o	c) $10.67 \times 10^7 W/m^2$ the relation between $\ln E$ at area of a body and T is the $\ln^{E} \Gamma$ c) $\ln^{E} \Gamma$ O°C is kept in a low temperature of the change in length of 10^{-5} °C ⁻¹) c) 52 mm travel along straight line b) Forced convection d) Thermal conduction y should be small. If P is a rethen c) R is best, Q worst	d) $10.67 \times 10^{14} W/m^2$ and $\ln T$ where E is the absolute temperature d) $\ln E$ erature at -170° C and is of the wise is d) 25 mm with the speed of light? mercury thermometer, Q is d) P is best, Q worst
a) 5.67 × 10 ⁸ W/m ² 476. Which of the following amount of radiation employed amount of radiation employed and a stretched by hanging (Y = 2 × 10 ¹¹ Nm ⁻² , a) 5.2 mm 478. In which mode of transal Thermal radiation c) Natural convection 479. One quality of a thermoder a resistance thermomer a resistance thermomer a) P is best, R worst 480. We consider the radial	b) $5.67 \times 10^{12} W/m^2$ graphs correctly represents to itted per unit time from unit to the following period of 10 kg at one engenoments and $\alpha = 1.2 \times 1$	c) $10.67 \times 10^7 W/m^2$ the relation between $\ln E$ are area of a body and T is the area of a body and T is the order of the following should be small. If P is a result of the following should. Which of the following body. Which of the following should with the following should.	d) $10.67 \times 10^{14} W/m^2$ and $\ln T$ where E is the absolute temperature d) $\ln E$ erature at -170° C and is of the wise is d) 25 mm with the speed of light? mercury thermometer, Q is d) P is best, Q worst owing statements is true?
a) 5.67 × 10 ⁸ W/m ² 476. Which of the following amount of radiation employed and the following amount of radiation employed and the following amount of radiation employed and following (Y = 2 × 10 ¹¹ Nm ⁻² , a) 5.2 mm 478. In which mode of transport and the following a resistance thermome a resistance thermome a) P is best, R worst 480. We consider the radiation is employed a following a realization is employed.	b) $5.67 \times 10^{12} W/m^2$ graphs correctly represents the itted per unit time from unit to the following period of 10 kg at one engent o	c) $10.67 \times 10^7 W/m^2$ the relation between $\ln E$ at area of a body and T is the open of the second of the sec	d) $10.67 \times 10^{14} W/m^2$ and $\ln T$ where E is the absolute temperature d) $\ln E$ erature at -170° C and is of the wise is d) 25 mm with the speed of light? mercury thermometer, Q is only P is best, Q worst owing statements is true?

- c) The radiation emitted is in the infrared region
- d) The radiation is emitted only during the day
- 481. Which of the curves in figure represents the relation between Celsius and Fahrenheit temperatures

a) 1

b) 2

c) 3

d) 4

482. Two vessels of different materials are similar in size in every respect. The same quantity of ice filled in them gets melted in 20 minutes and 40 minutes respectively. The ratio of thermal conductivities of the materials is

a) 5:6

b) 6:5

c) 3:1

483. During illness an 80 kg man ran fever of 102.2°F instead of normal body temperature of 98.6°F. Assuming that human body is mostly water, how much heat is required to raise his temperature by that amount

a) 100 kcal

b) 160 *kcal*

c) 50 kcal

d) 92 kcal

484. The intensity of radiation emitted by the sun has its maximum value at a wavelength of 510 nm and that emitted by the north star has the maximum value at wavelength of 350 nm. If these stars behave like black bodies, then the ratio of surface temperatures of the sun and north star is

a) 1.46

b) 0.69

c) 1.21

485. If the ratio of coefficient of thermal conductivity of silver and copper is 10:9, then the ratio of the lengths upto which wax will melt in Ingen Hauz experiment will be

a) 6:10

b) $\sqrt{10}:3$

c) 100:81

d) 81:100

486. Water falls from a height 500 m. The rise in temperature of water at bottom if whole of energy remains in water, will be (specific heat of water is $c=4.2 \text{ kJ kg}^{-1}$)

b) 1.16°C c) 0.96°C

d) 1.02°C

487. A metal ball of surface area 200 cm^2 and temperature 527°C is surrounded by a vessel at 27°C. If the emissivity of the metal is 0.4, then the rate of loss of heat from the ball is $(\sigma = 5.67 \times 10^{-8} J/m^2 - s - K^4)$

a) 108 joules approx

- b) 168 joules approx
- c) 182 joules approx
- d) 192 joules approx
- 488. A sphere at temperature 600K is placed in an environment of temperature is 200K. Its cooling rate is H. If its temperature reduced to 400K then cooling rate in same environment will become

a) (3/16)*H*

b) (16/3)*H*

c) (9/27)H

d) (1/16)H

489. A bimetallic is made of two strips A and B having coefficients of linear expansion α_A and α_B . If $\alpha_A < \alpha_B$, then on heating, the strip will

a) Bend with A on outer side

b) Bend with B on outer side

c) Not bend at all

d) None of the above

490. Two walls of thicknesses d_1 and d_2 and thermal conductivities k_1 and k_2 are in contact. In the steady state, if the temperatures at the outer surfaces are T_1 and T_2 , the temperature at the common wall is

b) $\frac{k_1T_1 + k_2d_2}{d_1 + d_2}$

c) $\left(\frac{k_1d_1 + k_2d_2}{T_1 + T_2}\right)T_1T_2$ d) $\frac{k_1d_1T_1 + k_2d_2T_2}{k_1d_1 + k_2d_2}$

491. Relation between the colour and the temperature of a star is given by

a) Wien's displacement law

b) Planck's law

c) Hubble's law

d) Fraunhoffer diffraction law

- 492. The velocity of heat radiation in vacuum is
 - a) Equal to that of light

b) Less than that of light

c) Greater than that of light

d) Equal to that of sound

493. A stationary object at 4°C and weighing 3.5 kg falls from a height of 2000 m on a snow mountain at 0°C. If the temperature of the object just before hitting the snow is 0°C and the object comes to rest immediately $(g = 10m/s^2)$ and (latent heat of ice = 3.5×10^5 joule/s), then the mass of ice that will melt is

a) 2 kg

- b) 200 g
- c) 20 g

- d) 2g
- 494. The amount of work, which can be obtained by supplying 200 cal of heat, is

a) 840 dyne

- b) 840 W
- c) 840 *erg*
- d) 840 I
- $495.1.56 \times 10^5$ J of heat is conducted through is 2 m² wall of 12 cm thick in one hour. Temperature difference between the two sides of the wall is 20°C. The thermal conductivity of the material of the wall is (in $Wm^{-1} K^{-1}$)

a) 0.11

b) 0.13

c) 0.15

- d) 1.2
- 496. The surface temperature of the stars is determined using

a) Planck's law

b) Wien's displacement law

c) Rayleigh-Jeans law

- d) Kirchhoff's law
- 497. The plots of intensity of radiation *versus* wavelength of three black bodies at temperatures T_1, T_2 and T_3 are shown. Then,

a) $T_3 > T_2 > T_1$

- b) $T_1 > T_2 > T_3$
- c) $T_2 > T_3 > T_1$ d) $T_1 > T_3 > T_2$
- 498. Two uniform brass rods A and B of lengths l and 2l and radii 2r and r respectively are heated to the same temperature. The ratio of the increase in the volumes of A to that of B is

- b) 1:2
- c) 2:1

- 499. A steel scale measures the length of copper wire as 80.0cm, when both are at 20°C (the calibration temperature for scale). What would be the scale read for the length of the wire when both are at 40°C? (Given $\alpha_{\text{steel}} = 11 \times 10^{-6} \text{ per}^{\circ}\text{C}$ and $\alpha_{\text{copper}} = 17 \times 10^{-6} \text{per}^{\circ}\text{C}$)

a) 80.0096 cm

- b) 80.0272 cm
- c) 1 cm

- d) 25.2 cm
- 500. A black body emits radiations of maximum intensity at a wavelength of 5000Å, when the temperature of the body is 1227°C. If the temperature of the body is increased by 2227°C, the maximum intensity of emitted radiation would be observed at

a) 2754.8Å

- b) 3000Å
- c) 3500Å
- d) 4000Å
- 501. Which of the following circular rods. (given radius r and length l) each made of the same material as whose ends are maintained at the same temperature will conduct most heat?

a) $r = 2r_0$; $l = 2l_0$

- b) $r = 2r_0$; $l = l_0$
- c) $r = r_0$; $l = l_0$
- d) $r = r_0$; $l = 2l_0$
- 502. 2 g of water condenses when passed through 40 g of water initially at 25°C. The condensation of steam raises the temperature of water to 54.3°C. What is the latent heat of steam?

a) 540 calg^{-1}

- b) 536 calg^{-1}
- c) 270 calg^{-1}
- d) 480 calg^{-1}
- 503. A block of ice at -10° c slowly heated and converted to steam at 100°C. Which of the following curves represents this phenomenon qualitatively?

- 504. A thermos flask is polished well
 - a) To make attractive
 - c) To absorb all radiations from outside
- b) For shining
- d) To reflect all radiations from outside
- 505. As compared to the person with white skin, the person with black skin will experience
 - a) Less heat and more cold
 - c) More heat and less cold

- b) More heat and more cold
- d) Less heat and less cold
- 506. When the pressure on water is increased the boiling temperature of water as compared to 100°C will be
 - a) Lower
 - c) Higher

- b) The same
- d) On the critical temperature
- 507. Which one of the figure gives the temperature dependence of density water correctly?

- 508. In order that the heat flows from one part of a solid to another part, what is required
 - a) Uniform density
 - c) Temperature gradient

- b) Density gradient
- d) Uniform temperature
- 509. The figure shows a system of two concentric spheres of radii r_1 and r_2 and kept at temperatures T_1 and T_2 respectively. The radial rate of flow of heat in a substance between the two concentric spheres, is proportional to

a)
$$\frac{(r_2-r_1)}{(r_1r_2)}$$

b)
$$\operatorname{In}\left(\frac{r_2}{r_1}\right)$$

c)
$$\frac{(r_1r_2)}{(r_2-r_1)}$$

d)
$$(r_2 - r_1)$$

510. A long metallic bar is carrying heat from one of its ends to the other end under steady-state. The variation of temperature θ along the length x of the bar from its hot end is best described by which of the following figure?

511. Four rods of identical cross-sectional area and made from the same metal form the sides of square. The temperature of two diagonally opposite points are T and $\sqrt{2}$ T respectively in the steady state. Assuming that only heat conduction takes place, what will be the temperature difference between other two points

a)
$$\frac{\sqrt{2}+1}{2}T$$

b)
$$\frac{2}{\sqrt{2}+1}T$$

- d) None of these
- 512. The figure given below shows the cooling curve of pure wax material after heating. It cools from A to B and solidifies along BD. If L and C are respective values of latent heat and the specific heat of the liquid wax, the ratio L/C is

b) 80

c) 100

- d) 20
- 513. On a new scale of temperature (which is linear) and called the W scale, the freezing and boiling points of water are 39° W and 239°W respectively. What will be the temperature on the new scale, corresponding to a temperature of 39°C on the Celsius scale
 - a) 200°W
- b) 139°W
- c) 78°W
- d) 117°W
- 514. Consider two insulating sheets with thermal resistances R_1 and R_2 as shown in figure. The temperature θ is

- $a) \frac{\theta_1 R_2 + \theta_2 R_1}{R_1 + R_2}$

- b) $\frac{(\theta_1 + \theta_2)R_1R_2}{R_1^2 + R_2^2}$ c) $\frac{\theta_1R_1 + \theta_2R_2}{R_1 + R_2}$ d) $\frac{\theta_1\theta_2R_1R_2}{(\theta_1 + \theta_2)(R_1R_2)}$
- 515. The *SI* unit of mechanical equivalent of heat is
 - a) *Ioule* × *Calorie*
- b) Joule/Calorie
- c) Calorie \times Erg
- d) Erg/Calorie

- 516. The mechanical equivalent of heat *J* is
 - a) A constant
- b) A physical quantity
- c) A conversion factor
- d) None of the above
- 517. When a liquid in a glass vessel is heated, is apparent expansion is 10.30×10^{-4} °C⁻¹. When the same liquid is heated in a metal vessel, its apparent expansion is 10.06×10^{-4} °C⁻¹. If the coefficient of linear expansion of glass = 9×10^{-6} °C⁻¹, what is the coefficient of linear expansion of metal?
 - a) $51 \times 10^{-6} \, \text{C}^{-1}$
- b) $17 \times 10^{-6} \, \text{C}^{-1}$
- c) 25×10^{-6} °C⁻¹
- d) 43 $\times 10^{-6}$ °C⁻¹
- 518. A bimetallic strip consists of metals *X* and *Y*. It is mounted rigidly at the base as shown. The metal X has a higher coefficient of expansion compared to that for metal Y. when bimetallic strip is placed in a cold bath

a) It will bend towards the right

b) It will bend towards the left

c) It will not bend but shrink

- d) It will neither bend nor shrink
- 519. A piece of blue glass heated to a high temperature and a piece of red glass at room temperature, are taken inside a dimly lit room then
 - a) The blue piece will look blue and red will look as usual
 - b) Red look brighter red and blue look ordinary blue
 - c) Blue shines like brighter red compared to the red piece
 - d) Both the pieces will look equally red
- 520. In determining the temperature of a distant star, one makes use of
 - a) Kirchhoff's law

b) Stefan's law

c) Wien's displacement law

- d) None of the above
- 521. The two ends of a rod of length L and a uniform cross-sectional area A are kept at two temperature T_1 and T_2 ($T_1 > T_2$). The rate of heat transfer, $\frac{dQ}{dt}$, through the rod in a steady state is given by a) $\frac{dQ}{dt} = \frac{kL(T_1 - T_2)}{A}$ b) $\frac{dQ}{dt} = \frac{k(T_1 - T_2)}{LA}$ c) $\frac{dQ}{dt} = kLA(T_1 - T_2)$ d) $\frac{dQ}{dt} = \frac{kA(T_1 - T_2)}{L}$

- 522. A black body is heated from 27°C to 127°C. The ratio of their energies of radiations emitted will be
 - a) 3:4

- b) 9:16
- c) 27:64
- d) 81:256
- 523. The radiation energy density per unit wavelength at a temperature T has a maximum at a wavelength λ_0 . At temperature 2T, it will have a maximum at a wavelength
 - a) $4\lambda_0$

b) $2\lambda_0$

c) $\lambda_0/2$

d) $\lambda_0/4$

524. Which of the following is the correct device for the detection of thermal radiation b) Liquid-in-glass thermometer a) Constant volume thermometer c) Six's maximum and minimum thermometer d) Thermopile 525. Two bodies A and B having temperatures 327°C and 427°C are radiating heat to the surrounding. The surrounding temperature is 27°C. The ration of rate of heat radiation of A to that of B is b) 0.31 c) 0.81 a) 0.52 526. The temperature of a thin uniform circular disc, of one metre diameter is increased by 10°C. The percentage increase in moment of inertia of the disc about an axis passing through its centre and perpendicular to the circular face (linear coefficient of expansion= 11×10^{-6} °C⁻¹) c) 0.022 a) 0.0055 b) 0.011 527. A solid substance is at 30°C. To this substance heat energy is supplied at a constant rate. Then temperature versus time graph is as shown in the figure. The substance is in liquid state for the portion (of the graph) Temperature (T°C) 240 210 60 30 a) *BC* b) CD c) ED d) EF 528. In a steady state of thermal conduction, temperature of the ends A and B of a 20 cm long rod are 100°C and 0°C respectively. What will be the temperature of the rod at a point at a distance of 6 cm from the end A of the rod a) −30°C b) 70°C c) 5°C d) None of the above 529. A vertical column 50 cm long at 50°C balances another column of same liquid 60 cm long at 100°C. The coefficient of absolute expansion of the liquid is a) 0.005/°C b) 0.0005/°C c) 0.002/°C d) 0.0002/°C 530. Assuming the sun to have a spherical outer surface of radius r, radiating like a black body at temperature $t^{\circ}C$, the power received by a unit surface, (normal to the incident rays) at a distance *R* from the centre of the sun is Where σ is the stefan's constant. b) $\frac{r^2 \sigma(t+273)^4}{4\pi R^2}$ c) $\frac{16\pi^2 r^2 \sigma t^4}{R^2}$ d) $\frac{r^2 \sigma(t+273)^4}{R^2}$ a) $\frac{4\pi r^2 \sigma t^4}{R^2}$ 531. A student takes 50gm wax (specific heat = 0.6 kcal/kg°C) and heats it till it boils. The graph between temperature and time is as follows. Heat supplied to the wax per minute and boiling point are respectively 250 [emperature (°<u>C</u> 200 150 100 50 Time (Minute) a) 500 cal, 50°C b) 1000 cal, 100°C c) 1500 cal, 200°C d) 1000 cal, 200°C 532. A black body at a temperature of 127°C radiates heat at the rate of 1 $cal/cm^2 \times sec$. At a temperature of 527°C the rate of heat radiation from the body in $(cal/cm^2 \times sec)$ will be a) 16.0 b) 10.45 c) 4.0 d) 2.0 533. Wires A and B have identical lengths and have circular cross-section. The radius of A is twice the radius of

B i.e. $r_A = 2r_B$. For a given temperature difference between the two ends, both wires conduct heat at the

same rate. The relation between the thermal conductivities is given by

a) $K_A = 4K_B$	b) $K_A = 2K_B$	c) $K_A = K_B/2$	$d) K_A = K_B/4$
	is that temperature at which	101	an Cara
a) Matter ceases to e		b) Ice melts and wat	er freezes
	sure of a gas becomes zero	d) None of these	
535. Absorption co-efficie	b) 0.5	c) 1	d) 0.25
a) Zero	,	,	,
	igh temperature T radiates		
	so half $(ie, \frac{T}{2})$, the radiated en	iergy (in Wm ⁻²) will b	oe .
a) $\frac{U}{8}$	b) $\frac{U}{16}$	c) $\frac{U}{4}$	d) $\frac{U}{2}$
•	10	T	2
537. A perfect black boo	dy is one whose emissive po	wer is	
a) Maximum	b) Zero	c) Unity	d) Minimum
538. If mass-energy equ	ιivalence is taken into accoι	ınt, when water is coo	led to form ice, the mass of
water should			
a) Increase		b) Remain unchang	ged
c) Decrease		d) First increase th	en decrease
539. Two identical square	e rods of metal are welded end	l to end as shown in figu	re (i), 20 calories of heat flows
			same amount of heat will flow
through the rods in			
0°	°C 100°C		
0°C 100°C (i)	too c		
a) 1 minute	b) 2 minutes	c) 4 minutes	d) 16 minutes
•	s of equal thicknesses and the	-	-
	plate is constructed, then the e		
		quivalent alemnal cond	activity of this plate will be
	place is constructed, then the c	•	
K_1 K_2			$(\kappa^2 + \kappa^2)^{3/2}$
K_1 K_2			d) $\frac{(K_1^2 + K_2^2)^{3/2}}{2K K}$
a) $\frac{K_1}{K_1 K_2}$	b) $\frac{2K_1K_2}{K_1 + K_2}$	c) $\frac{(K_1^2 + K_2^2)^{3/2}}{K_1 K_2}$	211112
a) $\frac{K_1 K_2}{K_1 + K_2}$ 541. The thermal capacity	b) $\dfrac{2K_1K_2}{K_1+K_2}$ y of 40 g of aluminium (specif	c) $\frac{(K_1^2 + K_2^2)^{3/2}}{K_1 K_2}$ ic heat = 0.2 cal/g /°C)	is
a) $\frac{K_1K_2}{K_1+K_2}$ 541. The thermal capacity a) $\frac{40 \ cal}{C}$	b) $\frac{2K_1K_2}{K_1+K_2}$ y of 40 g of aluminium (specif b) 160 $cal/^{\circ}$ C	c) $\frac{(K_1^2 + K_2^2)^{3/2}}{K_1 K_2}$ ic heat = 0.2 cal/g /°C) c) 200 cal /°C	is d) 8 <i>cal/</i> °C
a) $\frac{K_1 K_2}{K_1 + K_2}$ 541. The thermal capacity a) 40 $cal/^{\circ}$ C 542. Which one of the following the following state of the follow	b) $\dfrac{2K_1K_2}{K_1+K_2}$ y of 40 g of aluminium (specifically) 160 $cal/^{\circ}$ C lowing would raise the temperature of the second contraction of th	c) $\frac{(K_1^2 + K_2^2)^{3/2}}{K_1 K_2}$ ic heat = 0.2 cal/g /°C) c) 200 cal /°C rature of 20 g of water a	is d) 8 cal/°C t 30°C most when mixed with it?
a) $\frac{K_1K_2}{K_1 + K_2}$ 541. The thermal capacity a) $40 \ cal/^{\circ}C$ 542. Which one of the foll a) 20 g of water at 44	b) $\frac{2K_1K_2}{K_1+K_2}$ y of 40 g of aluminium (specifically) 160 $cal/^{\circ}$ C lowing would raise the temper 0° C	c) $\frac{(K_1^2 + K_2^2)^{3/2}}{K_1 K_2}$ ic heat = 0.2 cal/g /°C) c) 200 cal /°C rature of 20 g of water a b) 40 g of water at 3	is d) 8 cal/°C t 30°C most when mixed with it?
a) $\frac{K_1 K_2}{K_1 + K_2}$ 541. The thermal capacity a) 40 $cal/^{\circ}$ C 542. Which one of the foll a) 20 g of water at 4cc) 10 g of water at 5	b) $\frac{2K_1K_2}{K_1+K_2}$ y of 40 g of aluminium (specifically) 160 $cal/^{\circ}$ C lowing would raise the temper 0°C 0°C	c) $\frac{(K_1^2 + K_2^2)^{3/2}}{K_1 K_2}$ ic heat = $0.2 cal/g$ /°C) c) $200 cal$ /°C rature of 20 g of water at 3 d) 4 g water at 80°C	is d) 8 cal/°C t 30°C most when mixed with it? 5 °C
a) $\frac{K_1K_2}{K_1 + K_2}$ 541. The thermal capacity a) $40 \ cal/^{\circ}$ C 542. Which one of the foll a) 20 g of water at 40 c) 10 g of water at 50 543. A rectangular block in	b) $\frac{2K_1K_2}{K_1+K_2}$ y of 40 g of aluminium (specifically) 160 $cal/^{\circ}$ C lowing would raise the temper 0°C 0°C is heated from 0°C to 100°C. To	c) $\frac{(K_1^2 + K_2^2)^{3/2}}{K_1 K_2}$ ic heat = $0.2 cal/g$ /°C) c) $200 cal$ /°C rature of 20 g of water at 3 d) 4 g water at 80°C	is d) 8 cal/°C t 30°C most when mixed with it?
a) $\frac{K_1 K_2}{K_1 + K_2}$ 541. The thermal capacity a) 40 $cal/^{\circ}$ C 542. Which one of the foll a) 20 g of water at 4cc) 10 g of water at 5	b) $\frac{2K_1K_2}{K_1+K_2}$ y of 40 g of aluminium (specifically) 160 $cal/^{\circ}$ C lowing would raise the temper 0°C 0°C is heated from 0°C to 100°C. To	c) $\frac{(K_1^2 + K_2^2)^{3/2}}{K_1 K_2}$ ic heat = $0.2 cal/g$ /°C) c) $200 cal$ /°C rature of 20 g of water at 3 d) 4 g water at 80°C	is d) 8 cal/°C t 30°C most when mixed with it? 5 °C
a) $\frac{K_1 K_2}{K_1 + K_2}$ 541. The thermal capacity a) 40 $cal/^{\circ}$ C 542. Which one of the foll a) 20 g of water at 40 c) 10 g of water at 50 543. A rectangular block is percentage increase a) 0.6%	b) $\frac{2K_1K_2}{K_1+K_2}$ y of 40 g of aluminium (specifically) 160 $cal/^{\circ}$ C lowing would raise the temper 0°C 0°C is heated from 0°C to 100°C. The in its volume?	c) $\frac{(K_1^2 + K_2^2)^{3/2}}{K_1 K_2}$ ic heat = $0.2 \ cal/g/^{\circ}C$ c) $200 \ cal/^{\circ}C$ rature of 20 g of water at 3 d) 4 g water at 80°C he percentage increase c) 0.2%	is d) $8 \ cal/^{\circ}C$ tt $30^{\circ}C$ most when mixed with it? $5^{\circ}C$ in its length is 0.2%. What is the d) 0.4%
a) $\frac{K_1 K_2}{K_1 + K_2}$ 541. The thermal capacity a) 40 $cal/^{\circ}$ C 542. Which one of the foll a) 20 g of water at 40 c) 10 g of water at 50 543. A rectangular block is percentage increase a) 0.6%	b) $\frac{2K_1K_2}{K_1+K_2}$ y of 40 g of aluminium (specifically) 160 $cal/^{\circ}$ C lowing would raise the temper 0°C 0°C is heated from 0°C to 100°C. The in its volume?	c) $\frac{(K_1^2 + K_2^2)^{3/2}}{K_1 K_2}$ ic heat = $0.2 \ cal/g/^{\circ}C$ c) $200 \ cal/^{\circ}C$ rature of 20 g of water at 3 d) 4 g water at 80°C he percentage increase c) 0.2%	is d) 8 cal/°C t 30°C most when mixed with it? 5 °C in its length is 0.2%. What is the d) 0.4% s correctly given by
a) $\frac{K_1K_2}{K_1 + K_2}$ 541. The thermal capacity a) $40 \ cal/^{\circ}C$ 542. Which one of the foll a) 20 g of water at 4cc) 10 g of water at 5cc 543. A rectangular block is percentage increase a) 0.6% 544. The earth radiates in	b) $\frac{2K_1K_2}{K_1+K_2}$ y of 40 g of aluminium (specific b) 160 $cal/^{\circ}$ C lowing would raise the temper 0°C 0°C is heated from 0°C to 100°C. The in its volume? b) 0.10% in the infra-red region of the specific specific content of the specif	c) $\frac{(K_1^2 + K_2^2)^{3/2}}{K_1 K_2}$ ic heat = $0.2 \ cal/g$ /°C) c) 200 cal /°C rature of 20 g of water at 3 d) 4 g water at 80°C he percentage increase at 3 c) 0.2% ectrum. The spectrum is	is d) 8 cal/°C t 30°C most when mixed with it? 5 °C in its length is 0.2%. What is the d) 0.4% s correctly given by
a) $\frac{K_1 K_2}{K_1 + K_2}$ 541. The thermal capacity a) 40 $cal/^{\circ}$ C 542. Which one of the foll a) 20 g of water at 4 c) 10 g of water at 5 543. A rectangular block percentage increase a) 0.6% 544. The earth radiates in a) Wien's law c) Planck's law of radiates of the second	b) $\frac{2K_1K_2}{K_1+K_2}$ y of 40 g of aluminium (specific b) 160 $cal/^{\circ}$ C lowing would raise the temper 0°C 0°C is heated from 0°C to 100°C. The in its volume? b) 0.10% in the infra-red region of the specific distribution.	c) $\frac{(K_1^2 + K_2^2)^{3/2}}{K_1 K_2}$ ic heat = $0.2 \ cal/g/^{\circ}C$ c) $200 \ cal/^{\circ}C$ rature of 20 g of water at 3 d) 4 g water at 80°C he percentage increase c) 0.2% ectrum. The spectrum is b) Rayleigh Jeans law d) Stefan's law of race	is d) 8 cal/°C t 30°C most when mixed with it? 5 °C in its length is 0.2%. What is the d) 0.4% s correctly given by
a) $\frac{K_1K_2}{K_1 + K_2}$ 541. The thermal capacity a) $40 \ cal/^{\circ}C$ 542. Which one of the foll a) 20 g of water at 4 c) 10 g of water at 5 c) 10 g of water at 5 certain the second percentage increase a) 0.6% 544. The earth radiates in a) Wien's law c) Planck's law of rational second percentage increase a) 1.545. The coefficient of vertical second percentage increase a) 1.545. The coefficient of vertical second percentage increase a) 1.545.	b) $\frac{2K_1K_2}{K_1+K_2}$ y of 40 g of aluminium (specific b) 160 $cal/^{\circ}$ C lowing would raise the temper 0°C 0°C is heated from 0°C to 100°C. The in its volume? b) 0.10% in the infra-red region of the specific distribution.	c) $\frac{(K_1^2 + K_2^2)^{3/2}}{K_1K_2}$ ic heat = $0.2 \ cal/g/^{\circ}C$ c) $200 \ cal/^{\circ}C$ rature of 20 g of water at 3 d) 4 g water at 80°C he percentage increase contains and 3 di Stefan's law of rad di s $49 \times 10^{-5} \mathrm{K}^{-1}$. Calcillo contains and $100 \mathrm{K}^{-1}$	is d) 8 cal/°C t 30°C most when mixed with it? 5 °C in its length is 0.2%. What is the d) 0.4% s correctly given by W diation
a) $\frac{K_1K_2}{K_1 + K_2}$ 541. The thermal capacity a) $40 \ cal/^{\circ}C$ 542. Which one of the foll a) 20 g of water at 4 c) 10 g of water at 5 c) 10 g of water at 5 certain the second percentage increase a) 0.6% 544. The earth radiates in a) Wien's law c) Planck's law of rational second percentage increase a) 1.545. The coefficient of vertical second percentage increase a) 1.545. The coefficient of vertical second percentage increase a) 1.545.	b) $\frac{2K_1K_2}{K_1 + K_2}$ y of 40 g of aluminium (specific b) 160 $cal/^{\circ}$ C lowing would raise the temper 0°C 0°C is heated from 0°C to 100°C. The in its volume? b) 0.10% in the infra-red region of the specific diation colume expansion of a liquic colume expansion of a liquic	c) $\frac{(K_1^2 + K_2^2)^{3/2}}{K_1K_2}$ ic heat = $0.2 \ cal/g/^{\circ}C$ c) $200 \ cal/^{\circ}C$ rature of 20 g of water at 3 d) 4 g water at 80°C he percentage increase contains and 3 di Stefan's law of rad di s $49 \times 10^{-5} \mathrm{K}^{-1}$. Calcillo contains and $10 \times 10^{-5} \mathrm{K}^{-1}$. Calcillo contains and $10 \times 10^{-5} \mathrm{K}^{-1}$.	is d) 8 cal/°C t 30°C most when mixed with it? 5 °C in its length is 0.2%. What is the d) 0.4% s correctly given by W diation
a) $\frac{K_1K_2}{K_1 + K_2}$ 541. The thermal capacity a) $40 \ cal/^{\circ}$ C 542. Which one of the foll a) 20 g of water at 4 c) 10 g of water at 5 c) 10 g of water at 5 certain the second percentage increase a) 0.6% 544. The earth radiates in a) Wien's law c) Planck's law of radiates of the second percentage increase a) 0.6% 545. The coefficient of which its density when the a) 7.5×10^{-3}	b) $\frac{2K_1K_2}{K_1 + K_2}$ y of 40 g of aluminium (specific b) 160 $cal/^{\circ}$ C lowing would raise the temper 0° C 0° C is heated from 0° C to 100° C. The in its volume? b) 0.10% In the infra-red region of the specific diation for c 0	c) $\frac{(K_1^2 + K_2^2)^{3/2}}{K_1 K_2}$ ic heat = $0.2 \ cal/g$ /°C) c) 200 cal /°C rature of 20 g of water at 3 d) 4 g water at 80°C he percentage increase at 3 c) 0.2% ectrum. The spectrum is b) Rayleigh Jeans law d) Stefan's law of rac 1 is 49 × 10^{-5} K ⁻¹ . Calc 30°C. c) 1.5×10^{-2}	is d) $8 cal/^{\circ}C$ tt $30^{\circ}C$ most when mixed with it? $5^{\circ}C$ in its length is 0.2%. What is the d) 0.4% s correctly given by W diation culate the fractional change in d) 1.1×10^{-3}
a) $\frac{K_1 K_2}{K_1 + K_2}$ 541. The thermal capacity a) $40 \ cal/^{\circ}$ C 542. Which one of the foll a) 20 g of water at 4 c) 10 g of water at 5 c 543. A rectangular block is percentage increase a) 0.6% 544. The earth radiates in a) Wien's law c) Planck's law of radiates in the coefficient of vits density when the a) 7.5×10^{-3} 546. If a cylinder a diame	b) $\frac{2K_1K_2}{K_1 + K_2}$ y of 40 g of aluminium (specific b) 160 $cal/^{\circ}$ C lowing would raise the temper 0° C 0° C is heated from 0° C to 100° C. The in its volume? b) 0.10% In the infra-red region of the specific diation for c 0	c) $\frac{(K_1^2 + K_2^2)^{3/2}}{K_1 K_2}$ ic heat = $0.2 cal/g/^{\circ}$ C) c) 200 $cal/^{\circ}$ C rature of 20 g of water at 3 d) 4 g water at 80°C the percentage increase to 3 ectrum. The spectrum is b) Rayleigh Jeans law d) Stefan's law of race 1 is 49 × 10^{-5} K ⁻¹ . Calcondition 20°C. c) 1.5×10^{-2} d into a hole of diamete	is d) 8 $cal/^{\circ}C$ t 30°C most when mixed with it? 5 °C in its length is 0.2%. What is the d) 0.4% s correctly given by w diation culate the fractional change in d) 1.1×10^{-3} or 0.9997 cm in a steel plate at
a) $\frac{K_1K_2}{K_1 + K_2}$ 541. The thermal capacity a) $40 \ cal/^{\circ}$ C 542. Which one of the foll a) 20 g of water at 4c; 10 g of water at 5c 543. A rectangular block is percentage increase a) 0.6% 544. The earth radiates in a) Wien's law c) Planck's law of radiates in the same temperature.	b) $\frac{2K_1K_2}{K_1 + K_2}$ y of 40 g of aluminium (specifically) 160 $cal/^{\circ}$ C lowing would raise the temper 0°C 0°C is heated from 0°C to 100°C. The inits volume? b) 0.10% In the infra-red region of the specifically distributed in the temperature is raised by b) 3.0×10^{-3} of the fitter 1.0 cm at 30°C is to be fitter	c) $\frac{(K_1^2 + K_2^2)^{3/2}}{K_1 K_2}$ ic heat = $0.2 cal/g/^{\circ}$ C) c) 200 $cal/^{\circ}$ C rature of 20 g of water at 3 d) 4 g water at 80°C the percentage increase to 3 ectrum. The spectrum is b) Rayleigh Jeans law d) Stefan's law of race 1 is 49 × 10^{-5} K ⁻¹ . Calcondition 20°C. c) 1.5×10^{-2} d into a hole of diamete	is d) 8 $cal/^{\circ}C$ t 30°C most when mixed with it? 5 °C in its length is 0.2%. What is the d) 0.4% s correctly given by w diation culate the fractional change in d) 1.1×10^{-3} or 0.9997 cm in a steel plate at
a) $\frac{K_1K_2}{K_1 + K_2}$ 541. The thermal capacity a) $40 \ cal/^{\circ}$ C 542. Which one of the foll a) 20 g of water at 4c; 10 g of water at 5c 543. A rectangular block is percentage increase a) 0.6% 544. The earth radiates in a) Wien's law c) Planck's law of radiates in the same temperature.	b) $\frac{2K_1K_2}{K_1 + K_2}$ y of 40 g of aluminium (specifically) b) 160 $cal/^{\circ}$ C lowing would raise the temper 0°C 0°C is heated from 0°C to 100°C. The in its volume? b) 0.10% In the infra-red region of the specifically distributed in the temperature is raised by b) 3.0×10^{-3} of the infra-red region of the fitter, then minimum required risk properties of the specifically and the specifically are temperature is raised by b) 3.0×10^{-3} of the specifically are the specifically are the specifically are the specifically are specifically as 0.0×10^{-3} of the specifically are specifically as 0.0×10^{-3} of the specifically are specifically as 0.0×10^{-3} of the specifically are specifically as 0.0×10^{-3} of the specifically are specifically as 0.0×10^{-3} of the specifically are specifically as 0.0×10^{-3} of the specifically are specifically as 0.0×10^{-3} of the specifically are specifically as 0.0×10^{-3} of the specifically are specifically as 0.0×10^{-3} of the specifically are specifically as 0.0×10^{-3} of the specifically are specifically as 0.0×10^{-3} of the specifically are specifically are specifically as 0.0×10^{-3} of the specifically are specifically as 0.0×10^{-3} of the specifically are specifically as 0.0×10^{-3} of the specifically are specifically as 0.0×10^{-3} of the specifically are specifically as 0.0×10^{-3} of the specifically are specifically as 0.0×10^{-3} of the specifically are specifically as 0.0×10^{-3} of the specifically are specifically as 0.0×10^{-3} of the specifically are specifically as 0.0×10^{-3} of the specifically are specifically as 0.0×10^{-3} of the specifically are specifically as 0.0×10^{-3} of the specifically are specifically as 0.0×10^{-3} of the specifically are specifically as 0.0×10^{-3} of the specifically are specifically as 0.0×10^{-3} of the specifically are specifically are specifically as 0.0×10^{-3} of the specifically are specificall	c) $\frac{(K_1^2 + K_2^2)^{3/2}}{K_1 K_2}$ ic heat = $0.2 cal/g/^{\circ}$ C) c) 200 $cal/^{\circ}$ C rature of 20 g of water at 3 d) 4 g water at 80°C the percentage increase to 3 ectrum. The spectrum is b) Rayleigh Jeans law d) Stefan's law of race 1 is 49 × 10^{-5} K ⁻¹ . Calcondition 20°C. c) 1.5×10^{-2} d into a hole of diamete	is d) 8 $cal/^{\circ}C$ t 30°C most when mixed with it? 5 °C in its length is 0.2%. What is the d) 0.4% s correctly given by w diation culate the fractional change in d) 1.1×10^{-3} or 0.9997 cm in a steel plate at
a) $\frac{K_1K_2}{K_1 + K_2}$ 541. The thermal capacity a) $40 \ cal/^{\circ}C$ 542. Which one of the foll a) 20 g of water at 4 c) 10 g of water at 5 543. A rectangular block is percentage increase a) 0.6% 544. The earth radiates in a) Wien's law c) Planck's law of rates 1 consists of the coefficient of which is density when the a) 7.5×10^{-3} 546. If a cylinder a diamethe same temperature linear expansion of s	b) $\frac{2K_1K_2}{K_1 + K_2}$ y of 40 g of aluminium (specifically) 160 $cal/^{\circ}C$ lowing would raise the temper $0^{\circ}C$ $0^{\circ}C$ is heated from $0^{\circ}C$ to $100^{\circ}C$. The inits volume? b) 0.10% In the infra-red region of the specifical distribution of the infra-red region of a liquidation t_0 to t_0 the temperature is raised by t_0 t_0 to t_0 the infra-red region of a liquidation t_0 the temperature is raised by t_0 t_0 to t_0 the infra-red region of a liquidation t_0 the infra-red region of a liquidation t_0 is to be fitted t_0 at t_0 to t_0 is to be fitted t_0 at t_0 and t_0 is to be fitted re, then minimum required rises t_0 is t_0 and t_0 is t_0 by t_0 and t_0 is t_0 and t_0 in t_0 and t_0 is t_0 by t_0 in t_0 and t_0 in t_0 and t_0 in $t_$	c) $\frac{(K_1^2 + K_2^2)^{3/2}}{K_1K_2}$ ic heat = $0.2 \ cal/g/^{\circ}C$ c) $200 \ cal/^{\circ}C$ rature of 20 g of water at 3 d) 4 g water at 80°C he percentage increase so the percentage increase so b) Rayleigh Jeans law d) Stefan's law of rad d is $49 \times 10^{-5} \text{K}^{-1}$. Calcalling the control of the control	is d) $8 cal/^{\circ}C$ t $30^{\circ}C$ most when mixed with it? $5^{\circ}C$ in its length is 0.2%. What is the d) 0.4% s correctly given by w diation culate the fractional change in d) 1.1×10^{-3} or $0.9997 cm$ in a steel plate at the plate is : (Coefficient of

c) Both (a) and (b)

- d) None of the above
- 548. In a vertical U-tube containing a liquid, the two arms are maintained at different temperatures t_1 and t_2 . The liquid columns in the two arms have heights l_1 and l_2 respectively. The coefficient of volume expansion of the liquid is equal to

- a) $\frac{l_1 l_2}{l_2 t_1 l_1 t_2}$
- b) $\frac{l_1 l_2}{l_1 t_1 l_2 t_2}$ c) $\frac{l_1 + l_2}{l_2 t_1 + l_1 t_2}$ d) $\frac{l_1 + l_2}{l_1 t_1 + l_2 t_2}$
- 549. If temperature of a black body increases from 7°C to 287°C, then the rate of energy radiation increases by
 - a) $\left(\frac{287}{7}\right)^4$
- b) 16

c) 4

- d) 2
- 550. If earth suddenly stops rotating about its own axis, the increase in it's temperature will be
 - a) $\frac{R^2\omega^2}{5Is}$
- b) $\frac{R^2\omega^2}{Is}$
- c) $\frac{Rm\omega^2}{5Is}$
- d) None of these
- 551. A constant pressure air thermometer gave a reading of 47.5 units of volume when immersed in ice cold water, and 67 units in a boiling liquids. The boiling point of the liquid will be
 - a) 135°C
- b) 125°C
- c) 112°C
- d) 100°C
- 552. Two identical metal balls at temperature 200°C and 400°C kept in air at 27°C. The ratio of net heat loss by these bodies is
 - a) 1/4

- d) $\frac{473^4 300^4}{673^4 300^4}$
- 553. Total energy emitted by a perfectly black body is directly proportional to T^n where n is

- 554. The coefficient of apparent expansion of a liquid when determined using two different vessels A and B are γ_1 and γ_2 respectively. If the coefficient of linear expansion of the vessel A is α , the coefficient of linear expansion of the vessel *B* is

 a) $\frac{\alpha \gamma_1 \gamma_2}{\gamma_1 + \gamma_2}$ b) $\frac{\gamma_1 - \gamma_2}{2\alpha}$ c) $\frac{\gamma_1 - \gamma_2 + \alpha}{2\alpha}$
- b) $\frac{\gamma_1 \gamma_2}{2\alpha}$
- c) $\frac{\gamma_1 \gamma_2 + \alpha}{3}$ d) $\frac{\gamma_1 \gamma_2}{3} + \alpha$
- 555. The surface area of a black body is $5 \times 10^{-4}~\text{m}^2$ and its temperature is 727°C . the energy radiated by it per minute is $(\sigma = 5.67 \times 10^{-8} \text{ Jm}^{-2} - \text{s}^{-1} - \text{K}^{-4})$
 - a) $1.7 \times 10^3 \, \text{J}$
- b) 2.5×10^{2} J
- c) 8×10^{3} J
- d) $3 \times 10^4 \, \text{J}$
- 556. On heating, the temperature at which water has minimum volume is
 - a) 0°C

b) 4°C

c) 4K

- d) 100°C
- 557. A uniform metal rod is used as a bar pendulum. If the room temperature rise by 10°C and coefficient of linear expansion of the metal of the rod is 2×10^6 °C⁻¹, the period of pendulum will increase by
 - a) $1 \times 10^{-3}\%$
- b) -1×10^{-3} %
- c) $2 \times 10^{-3}\%$
- d) $-2 \times 10^{-3}\%$
- 558. A lead bulled strikes at target with a velocity of 480 ms⁻¹. If the bullet falls dead, the rise in temperature of bullet (c = 0.03), assuming that heat produced is equally shared between the bullet and target is
 - a) 557°C
- b) 457°C
- c) 857°C
- d) 754°C